Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310253606> ?p ?o ?g. }
- W4310253606 endingPage "128792" @default.
- W4310253606 startingPage "128792" @default.
- W4310253606 abstract "Accurate prediction of groundwater level (GWL) over a period of time is of great importance for groundwater resources management. Machine learning techniques due to their great performance have recently been used for this problem. Previous methods, however, did not consider the spatial relationships between wells due to the difficulty to handle unstructured well location data. In this paper, a graph neural network (GNN) is used to forecast groundwater dynamics where it can represent each well as a node in the graph. The spatial information is, thus, extracted from an interconnected network using graph convolution layers with a self-adaptive adjacency matrix. The temporal features of the sequence are obtained by gated temporal convolutional networks. The model was applied and evaluated for wells in the southwest area of British Colombia in Canada using data about 11 years (2010–2020). The proposed model performs better in terms of all the defined evaluation metrics, when compared with two baseline models: long short-term memory (LSTM) and gated recurrent units (GRU). Moreover, when the spatial dependencies are completely unknown, the model can still learn them from the data and obtain comparable performance. Furthermore, the proposed model has a high efficiency since it can simultaneously model GWL change for all monitoring wells in the system. We also demonstrated that the spatial dependencies between each well could be intuitively interpreted from the learned adjacency matrix." @default.
- W4310253606 created "2022-11-30" @default.
- W4310253606 creator A5016991967 @default.
- W4310253606 creator A5079372989 @default.
- W4310253606 date "2023-01-01" @default.
- W4310253606 modified "2023-09-25" @default.
- W4310253606 title "Graph neural network for groundwater level forecasting" @default.
- W4310253606 cites W1501856433 @default.
- W4310253606 cites W1777560676 @default.
- W4310253606 cites W1849454363 @default.
- W4310253606 cites W1964340924 @default.
- W4310253606 cites W1982546148 @default.
- W4310253606 cites W1983211566 @default.
- W4310253606 cites W1985872718 @default.
- W4310253606 cites W2005309788 @default.
- W4310253606 cites W2022977604 @default.
- W4310253606 cites W2028573940 @default.
- W4310253606 cites W2041534329 @default.
- W4310253606 cites W2062227835 @default.
- W4310253606 cites W2064675550 @default.
- W4310253606 cites W2066255360 @default.
- W4310253606 cites W2066660768 @default.
- W4310253606 cites W2072642501 @default.
- W4310253606 cites W2080892445 @default.
- W4310253606 cites W2085396229 @default.
- W4310253606 cites W2101491865 @default.
- W4310253606 cites W2113208055 @default.
- W4310253606 cites W2116341502 @default.
- W4310253606 cites W2137988711 @default.
- W4310253606 cites W2166255624 @default.
- W4310253606 cites W2194775991 @default.
- W4310253606 cites W2306510195 @default.
- W4310253606 cites W2311533087 @default.
- W4310253606 cites W2560291307 @default.
- W4310253606 cites W2592133160 @default.
- W4310253606 cites W2592559322 @default.
- W4310253606 cites W2605739831 @default.
- W4310253606 cites W2612872092 @default.
- W4310253606 cites W2751907193 @default.
- W4310253606 cites W2758275649 @default.
- W4310253606 cites W2764279583 @default.
- W4310253606 cites W2786604254 @default.
- W4310253606 cites W2791646042 @default.
- W4310253606 cites W2800082432 @default.
- W4310253606 cites W2800140122 @default.
- W4310253606 cites W2884738788 @default.
- W4310253606 cites W2895981916 @default.
- W4310253606 cites W2899283552 @default.
- W4310253606 cites W2907891425 @default.
- W4310253606 cites W2948058585 @default.
- W4310253606 cites W2948532507 @default.
- W4310253606 cites W2952046647 @default.
- W4310253606 cites W2963076818 @default.
- W4310253606 cites W2965341826 @default.
- W4310253606 cites W2966421386 @default.
- W4310253606 cites W2974527409 @default.
- W4310253606 cites W2996196807 @default.
- W4310253606 cites W2998121919 @default.
- W4310253606 cites W2999802832 @default.
- W4310253606 cites W3045398433 @default.
- W4310253606 cites W3047165991 @default.
- W4310253606 cites W3047171122 @default.
- W4310253606 cites W3049575128 @default.
- W4310253606 cites W3100771313 @default.
- W4310253606 cites W3104693082 @default.
- W4310253606 cites W3105374384 @default.
- W4310253606 cites W3110901318 @default.
- W4310253606 cites W3115700835 @default.
- W4310253606 cites W3129366157 @default.
- W4310253606 cites W3129826323 @default.
- W4310253606 cites W3149057642 @default.
- W4310253606 cites W3151387141 @default.
- W4310253606 cites W3175039957 @default.
- W4310253606 cites W3210106786 @default.
- W4310253606 cites W3213123713 @default.
- W4310253606 cites W4211020000 @default.
- W4310253606 cites W4225370732 @default.
- W4310253606 doi "https://doi.org/10.1016/j.jhydrol.2022.128792" @default.
- W4310253606 hasPublicationYear "2023" @default.
- W4310253606 type Work @default.
- W4310253606 citedByCount "5" @default.
- W4310253606 countsByYear W43102536062023 @default.
- W4310253606 crossrefType "journal-article" @default.
- W4310253606 hasAuthorship W4310253606A5016991967 @default.
- W4310253606 hasAuthorship W4310253606A5079372989 @default.
- W4310253606 hasConcept C110484373 @default.
- W4310253606 hasConcept C11413529 @default.
- W4310253606 hasConcept C124101348 @default.
- W4310253606 hasConcept C127313418 @default.
- W4310253606 hasConcept C127413603 @default.
- W4310253606 hasConcept C132525143 @default.
- W4310253606 hasConcept C154945302 @default.
- W4310253606 hasConcept C180356752 @default.
- W4310253606 hasConcept C187320778 @default.
- W4310253606 hasConcept C2993807640 @default.
- W4310253606 hasConcept C41008148 @default.
- W4310253606 hasConcept C50644808 @default.
- W4310253606 hasConcept C62611344 @default.