Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310254928> ?p ?o ?g. }
- W4310254928 endingPage "16" @default.
- W4310254928 startingPage "1" @default.
- W4310254928 abstract "The progress achieved in transportation systems and artificial intelligence has amplified the use of intelligent transportation systems and Autonomous Vehicles (AVs). Indeed, AV systems have attracted much research in recent years, which enabled multiple autonomous driving tasks, including scene understanding, visual prediction, decision-making, and communication. The latter may create a bottleneck in low-resource autonomous driving systems that send the collected images to remote edge servers for processing and decision-making. Such an issue can be addressed by compressing the images in the AV and ensuring a good-quality reconstruction at the edge. In this paper, we propose a deep neural network for Compressed Sensing (CS) based image reconstruction that integrates image semantic perception to improve the reconstruction process for visual prediction tasks. The reconstruction process is optimized using a perception-inspired loss in an end-to-end model learning process. The trained model is evaluated on autonomous driving car datasets. Obtained experimental results outperform state-of-the-art approaches in terms of both image reconstruction quality and processing time. Finally, we perform semantic urban scene segmentation on the reconstructed image to evaluate reconstruction quality for visual task prediction. Obtained results on three semantic urban scene datasets demonstrate the efficiency of the proposed approach." @default.
- W4310254928 created "2022-11-30" @default.
- W4310254928 creator A5012811177 @default.
- W4310254928 creator A5017851410 @default.
- W4310254928 creator A5037312699 @default.
- W4310254928 creator A5047989984 @default.
- W4310254928 creator A5071350922 @default.
- W4310254928 date "2022-01-01" @default.
- W4310254928 modified "2023-09-25" @default.
- W4310254928 title "PSCS-Net: Perception Optimized Image Reconstruction Network for Autonomous Driving Systems" @default.
- W4310254928 cites W1539551155 @default.
- W4310254928 cites W1640937687 @default.
- W4310254928 cites W1915485278 @default.
- W4310254928 cites W1989480235 @default.
- W4310254928 cites W2017761965 @default.
- W4310254928 cites W2021583769 @default.
- W4310254928 cites W2036850226 @default.
- W4310254928 cites W2045518970 @default.
- W4310254928 cites W2045737896 @default.
- W4310254928 cites W2047920195 @default.
- W4310254928 cites W2050781067 @default.
- W4310254928 cites W2071284784 @default.
- W4310254928 cites W2082017338 @default.
- W4310254928 cites W2109449402 @default.
- W4310254928 cites W2115706991 @default.
- W4310254928 cites W2121927366 @default.
- W4310254928 cites W2127271355 @default.
- W4310254928 cites W2130120519 @default.
- W4310254928 cites W2133590993 @default.
- W4310254928 cites W2135859872 @default.
- W4310254928 cites W2151693816 @default.
- W4310254928 cites W2154304330 @default.
- W4310254928 cites W2171783193 @default.
- W4310254928 cites W2171959453 @default.
- W4310254928 cites W2273561594 @default.
- W4310254928 cites W2331128040 @default.
- W4310254928 cites W2340897893 @default.
- W4310254928 cites W2467953365 @default.
- W4310254928 cites W2543013670 @default.
- W4310254928 cites W2555730650 @default.
- W4310254928 cites W2566615221 @default.
- W4310254928 cites W2618413983 @default.
- W4310254928 cites W2739457923 @default.
- W4310254928 cites W2742253356 @default.
- W4310254928 cites W2757720380 @default.
- W4310254928 cites W2760843529 @default.
- W4310254928 cites W2765371849 @default.
- W4310254928 cites W2782278879 @default.
- W4310254928 cites W2787249689 @default.
- W4310254928 cites W2798559986 @default.
- W4310254928 cites W2805759392 @default.
- W4310254928 cites W2901383445 @default.
- W4310254928 cites W2903461360 @default.
- W4310254928 cites W2905359778 @default.
- W4310254928 cites W2947068802 @default.
- W4310254928 cites W2962790536 @default.
- W4310254928 cites W2963081547 @default.
- W4310254928 cites W2963322354 @default.
- W4310254928 cites W2963610939 @default.
- W4310254928 cites W2964081807 @default.
- W4310254928 cites W2972887266 @default.
- W4310254928 cites W2980149757 @default.
- W4310254928 cites W2982387022 @default.
- W4310254928 cites W2997669556 @default.
- W4310254928 cites W3008115128 @default.
- W4310254928 cites W3015023262 @default.
- W4310254928 cites W3016088311 @default.
- W4310254928 cites W3035574168 @default.
- W4310254928 cites W3035977435 @default.
- W4310254928 cites W3045518703 @default.
- W4310254928 cites W3048134800 @default.
- W4310254928 cites W3084062067 @default.
- W4310254928 cites W3102722370 @default.
- W4310254928 cites W3130423852 @default.
- W4310254928 cites W3209102426 @default.
- W4310254928 cites W4200596895 @default.
- W4310254928 cites W4250955649 @default.
- W4310254928 cites W4252713891 @default.
- W4310254928 doi "https://doi.org/10.1109/tits.2022.3223167" @default.
- W4310254928 hasPublicationYear "2022" @default.
- W4310254928 type Work @default.
- W4310254928 citedByCount "0" @default.
- W4310254928 crossrefType "journal-article" @default.
- W4310254928 hasAuthorship W4310254928A5012811177 @default.
- W4310254928 hasAuthorship W4310254928A5017851410 @default.
- W4310254928 hasAuthorship W4310254928A5037312699 @default.
- W4310254928 hasAuthorship W4310254928A5047989984 @default.
- W4310254928 hasAuthorship W4310254928A5071350922 @default.
- W4310254928 hasConcept C108583219 @default.
- W4310254928 hasConcept C111919701 @default.
- W4310254928 hasConcept C115961682 @default.
- W4310254928 hasConcept C127413603 @default.
- W4310254928 hasConcept C141379421 @default.
- W4310254928 hasConcept C149635348 @default.
- W4310254928 hasConcept C154945302 @default.
- W4310254928 hasConcept C162307627 @default.
- W4310254928 hasConcept C169760540 @default.
- W4310254928 hasConcept C201995342 @default.