Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310255094> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4310255094 endingPage "119289" @default.
- W4310255094 startingPage "119289" @default.
- W4310255094 abstract "The early sign detection of liver lesions plays an extremely important role in preventing, diagnosing, and treating liver diseases. In fact, radiologists mainly consider Hounsfield Units to locate liver lesions. However, most studies focus on the analysis of unenhanced computed tomography images without considering an attenuation difference between Hounsfield Units before and after contrast injection. Therefore, the purpose of this work is to develop an improved method for the automatic detection and classification of common liver lesions based on deep learning techniques and the variations of the Hounsfield Units density on computed tomography scans. We design and implement a multi-phase classification model developed on the Faster Region-based Convolutional Neural Networks (Faster R–CNN), Region-based Fully Convolutional Networks (R–FCN), and Single Shot Detector Networks (SSD) with the transfer learning approach. The model considers the variations of the Hounsfield Unit density on computed tomography scans in four phases before and after contrast injection (plain, arterial, venous, and delay). The experiments are conducted on three common types of liver lesions including liver cysts, hemangiomas, and hepatocellular carcinoma. Experimental results show that the proposed method accurately locates and classifies common liver lesions. The liver lesions detection with Hounsfield Units gives high accuracy of 100%. Meanwhile, the lesion classification achieves an accuracy of 95.1%. The promising results show the applicability of the proposed method for automatic liver lesions detection and classification. The proposed method improves the accuracy of liver lesions detection and classification compared with some preceding methods. It is useful for practical systems to assist doctors in the diagnosis of liver lesions. In our further research, an improvement can be made with big data analysis to build real-time processing systems and we expand this study to detect lesions from all parts of the human body, not just the liver." @default.
- W4310255094 created "2022-11-30" @default.
- W4310255094 creator A5007514576 @default.
- W4310255094 creator A5041262440 @default.
- W4310255094 creator A5056921599 @default.
- W4310255094 creator A5072446309 @default.
- W4310255094 creator A5081015117 @default.
- W4310255094 date "2023-03-01" @default.
- W4310255094 modified "2023-09-26" @default.
- W4310255094 title "Improving liver lesions classification on CT/MRI images based on Hounsfield Units attenuation and deep learning" @default.
- W4310255094 cites W1492167509 @default.
- W4310255094 cites W1999081932 @default.
- W4310255094 cites W2004676062 @default.
- W4310255094 cites W2175951243 @default.
- W4310255094 cites W2889552839 @default.
- W4310255094 cites W2946713019 @default.
- W4310255094 cites W3029385555 @default.
- W4310255094 cites W3046824133 @default.
- W4310255094 cites W3126512887 @default.
- W4310255094 cites W3128646645 @default.
- W4310255094 cites W3154518180 @default.
- W4310255094 cites W3186207403 @default.
- W4310255094 cites W3215819793 @default.
- W4310255094 cites W4211105405 @default.
- W4310255094 cites W4248628896 @default.
- W4310255094 doi "https://doi.org/10.1016/j.gep.2022.119289" @default.
- W4310255094 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36574537" @default.
- W4310255094 hasPublicationYear "2023" @default.
- W4310255094 type Work @default.
- W4310255094 citedByCount "1" @default.
- W4310255094 countsByYear W43102550942023 @default.
- W4310255094 crossrefType "journal-article" @default.
- W4310255094 hasAuthorship W4310255094A5007514576 @default.
- W4310255094 hasAuthorship W4310255094A5041262440 @default.
- W4310255094 hasAuthorship W4310255094A5056921599 @default.
- W4310255094 hasAuthorship W4310255094A5072446309 @default.
- W4310255094 hasAuthorship W4310255094A5081015117 @default.
- W4310255094 hasConcept C108583219 @default.
- W4310255094 hasConcept C123688308 @default.
- W4310255094 hasConcept C126838900 @default.
- W4310255094 hasConcept C153180895 @default.
- W4310255094 hasConcept C154945302 @default.
- W4310255094 hasConcept C163716698 @default.
- W4310255094 hasConcept C187954543 @default.
- W4310255094 hasConcept C2775842073 @default.
- W4310255094 hasConcept C2989005 @default.
- W4310255094 hasConcept C41008148 @default.
- W4310255094 hasConcept C544519230 @default.
- W4310255094 hasConcept C71924100 @default.
- W4310255094 hasConcept C81363708 @default.
- W4310255094 hasConceptScore W4310255094C108583219 @default.
- W4310255094 hasConceptScore W4310255094C123688308 @default.
- W4310255094 hasConceptScore W4310255094C126838900 @default.
- W4310255094 hasConceptScore W4310255094C153180895 @default.
- W4310255094 hasConceptScore W4310255094C154945302 @default.
- W4310255094 hasConceptScore W4310255094C163716698 @default.
- W4310255094 hasConceptScore W4310255094C187954543 @default.
- W4310255094 hasConceptScore W4310255094C2775842073 @default.
- W4310255094 hasConceptScore W4310255094C2989005 @default.
- W4310255094 hasConceptScore W4310255094C41008148 @default.
- W4310255094 hasConceptScore W4310255094C544519230 @default.
- W4310255094 hasConceptScore W4310255094C71924100 @default.
- W4310255094 hasConceptScore W4310255094C81363708 @default.
- W4310255094 hasLocation W43102550941 @default.
- W4310255094 hasLocation W43102550942 @default.
- W4310255094 hasOpenAccess W4310255094 @default.
- W4310255094 hasPrimaryLocation W43102550941 @default.
- W4310255094 hasRelatedWork W2029485479 @default.
- W4310255094 hasRelatedWork W2039422339 @default.
- W4310255094 hasRelatedWork W2731899572 @default.
- W4310255094 hasRelatedWork W2738221750 @default.
- W4310255094 hasRelatedWork W3133861977 @default.
- W4310255094 hasRelatedWork W3156786002 @default.
- W4310255094 hasRelatedWork W4200173597 @default.
- W4310255094 hasRelatedWork W4312417841 @default.
- W4310255094 hasRelatedWork W4321369474 @default.
- W4310255094 hasRelatedWork W564581980 @default.
- W4310255094 hasVolume "47" @default.
- W4310255094 isParatext "false" @default.
- W4310255094 isRetracted "false" @default.
- W4310255094 workType "article" @default.