Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310256171> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4310256171 endingPage "1516" @default.
- W4310256171 startingPage "1513" @default.
- W4310256171 abstract "Recently, preliminary studies on patients with Parkinson disease (PD) have suggested a beneficial effect of non-invasive vagus nerve stimulation (VNS) on motor symptoms [1Mondal B. Choudhury S. Simon B. Baker M.R. Kumar H. Noninvasive vagus nerve stimulation improves gait and reduces freezing of gait in Parkinson's disease.Mov Disord. 2019; 34: 917-918https://doi.org/10.1002/mds.27662Crossref PubMed Scopus (28) Google Scholar, 2Morris R. Yarnall A.J. Hunter H. Taylor J.P. Baker M.R. Rochester L. Noninvasive vagus nerve stimulation to target gait impairment in Parkinson's disease.Mov Disord. 2019 Jun; 34: 918-919https://doi.org/10.1002/mds.27664Crossref PubMed Scopus (21) Google Scholar, 3Mondal B. Choudhury S. Banerjee R. Roy A. Chatterjee K. Basu P. Singh R. Halder S. Shubham S. Baker S.N. Baker M.R. Kumar H. Non-invasive vagus nerve stimulation improves clinical and molecular biomarkers of Parkinson's disease in patients with freezing of gait.NPJ Parkinsons Dis. 2021; 7: 46https://doi.org/10.1038/s41531-021-00190-xCrossref PubMed Scopus (20) Google Scholar], in line with experimental evidence obtained in animal studies [[4]Farrand A.Q. Helke K.L. Gregory R.A. Gooz M. Hinson V.K. Boger H.A. Vagus nerve stimulation improves locomotion and neuronal populations in a model of Parkinson's disease.Brain Stimul. 2017; 10: 1045-1054https://doi.org/10.1016/j.brs.2017.08.008Abstract Full Text Full Text PDF PubMed Scopus (65) Google Scholar]. However, the mechanisms of the VNS action have yet to be elucidated. One possibility is that the stimulation acts as a modulator of ascending pathways, such as the serotonergic pathways, previously involved in the pathophysiology of gait dysfunction in PD [[4]Farrand A.Q. Helke K.L. Gregory R.A. Gooz M. Hinson V.K. Boger H.A. Vagus nerve stimulation improves locomotion and neuronal populations in a model of Parkinson's disease.Brain Stimul. 2017; 10: 1045-1054https://doi.org/10.1016/j.brs.2017.08.008Abstract Full Text Full Text PDF PubMed Scopus (65) Google Scholar,[5]Badran B.W. Dowdle L.T. Mithoefer O.J. LaBate N.T. Coatsworth J. Brown J.C. DeVries W.H. Austelle C.W. McTeague L.M. George M.S. Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: a concurrent taVNS/fMRI study and review.Brain Stimul. 2018; 11: 492-500https://doi.org/10.1016/j.brs.2017.12.009Abstract Full Text Full Text PDF PubMed Scopus (160) Google Scholar]. One of the neurophysiological markers of PD is the exaggerated beta oscillatory activity observed in the sub-thalamic nucleus (STN), which has previously been related to motor symptom severity [[6]Wiest C. Tinkhauser G. Pogosyan A. Bange M. Muthuraman M. Groppa S. Baig F. Mostofi A. Pereira E.A. Tan H. Brown P. Torrecillos F. Local field potential activity dynamics in response to deep brain stimulation of the subthalamic nucleus in Parkinson's disease.Neurobiol Dis. 2020; 143105019https://doi.org/10.1016/j.nbd.2020.105019Crossref PubMed Scopus (30) Google Scholar]. Although a link between the ascending vagal systems and the STN has been postulated in animals [[7]Han W. Tellez L.A. Perkins M.H. Perez I.O. Qu T. Ferreira J. Ferreira T.L. Quinn D. Liu Z.W. Gao X.B. Kaelberer M.M. Bohórquez D.V. Shammah-Lagnado S.J. de Lartigue G. de Araujo I.E. A neural circuit for gut-induced reward.Cell. 2018; 175 (e23): 665-678https://doi.org/10.1016/j.cell.2018.08.049Abstract Full Text Full Text PDF PubMed Scopus (337) Google Scholar], such a relationship has not yet been investigated in patients with PD. Here, we directly tested the effect of cervical non-invasive VNS on STN beta band activity by first recording local field potentials (LFP) in a PD patient undergoing awake deep brain stimulation (DBS) surgery, after an overnight withdrawal of PD medication. Unipolar STN-LFPs were acquired during the DBS surgery through Medtronic 3389 macroelectrodes, amplified, sampled at 2048 Hz and common average reference across all recording channels using a TMSi port (TMS International, Netherlands). The stimulation was performed with the GammaCORE device (transcutaneous cervical VNS) placed on his left neck. A conductive water-based gel was applied to maintain an uninterrupted conductive path from the stimulation surfaces to the skin during the full recording session. After a baseline recording of STN activity, the patient received four blocks of VNS (100 seconds (s) at 25Hz) separated by 60s of interstimulus interval (Fig. 1A). LFPs recordings were prolonged after the last stimulation block to investigate the post-stimulation effects. The recordings lasted about 12 min and the contact between the VNS device and the skin was maintained throughout, to avoid any sensory confound (alternating active and inactive states). LFPs were analysed offline using custom-written scripts in MATLAB (2019a, Mathworks, Massachusetts, USA). Bipolar montages were created between adjacent contacts to reduce the effect of volume conduction (L01, L12, L23 - left STN and R01, R12, R23 - right STN ventral-to-dorsal order). Continuous LFPs signals were then segmented in three periods as follows: baseline (30s before the first VNS block), inter-stimulation (3 ∗ 60s), and post-stimulation (30s after the last block). For each period, power spectral densities (PSD) were estimated in consecutives 5s time-windows (pwelch method, 50% overlap) normalized to the percentage of total power between 5 and 90 Hz and averaged across all time-windows. The results revealed a bilateral modulation of PSDs between the 3 periods particularly clear at contact R01 (Fig. 1B and Fig. S1). Cluster-based permutation tests suggest a reduction of low beta power after the last block compared to baseline (15:21Hz, t = 24.05, p = 0.004) or to the inter-stimulation periods (16:20, t = 16.7, p = 0.035). An increase of theta power was also observed in the inter-stimulation period compared to baseline (5:9Hz, t = −14.1, p = 0.044). Similar modulations were observed in other contacts (Figure S1- Table S1) apart from L01, which was located partially below the STN (Fig. S2). Note that beta power was however not significantly reduced during stimulation blocks (Fig. S3), suggesting that a minimal duration of VNS is needed to modulate STN activity. The dynamics of the VNS effect were further tested at R01, first in the 50s following the last VNS block (post-stimulation period) and then across the inter-stimulation periods (first 30s of each period). To this end, power was averaged in 4 pre-defined frequency bands (theta, 4–8Hz; alpha, 9–12 Hz; low-Beta, 13–20 Hz; high-Beta 20–31 Hz) in short time windows of 2.5 sec expressed as percentage change relative to the baseline. This revealed that low beta power was maximally reduced in the first 20 seconds following VNS offset, before progressively returning to its baseline level (Fig. 1C). In addition, the comparison across consecutive VNS blocks showed a progressive reduction in low beta, which reached its maximum after the last block, suggesting a cumulative effect across blocks (Fig. 1D). To confirm this first observation in a larger cohort, the experiment was replicated in 6 chronically implanted PD patients (Percept IPG, Sensight leads; Medtronic), recruited from the movement disorders clinic of the Fondazione Policlinico Universitario Campus Bio-Medico (Rome, Italy). All of them had STN-DBS surgery at least 2 months before the recording, to avoid potential artifacts due to the stunning effect (clinical details in Table S2). Non-invasive VNS was applied after overnight withdrawal of parkinsonian treatment and 1 hour after DBS was turned off (med-OFF/stim OFF) following the protocol described in Fig. 1A. The VNS stimulation was well tolerated by all patients and no adverse events were reported. LFPs were recorded with the “indefinite streaming” mode of the Percept and analysed following the same procedure as patient 1. Data from patient 5 were excluded from further analysis due to the presence of artifacts. The group analysis showed a significant bilateral reduction of low beta following the VNS protocol (left STN t = −2.67, p = 0.019; right STN t = −5.56, p < 0.01; Fig. 2A). In line with the former intraoperative case, this reduction was prominent on the right STN (Fig. S3), was achieved progressively across stimulation blocks, and persisted after the last block for 20–30s before slowly disappearing (Fig. 2BC). This is the first study analysing the effect of VNS on STN activity in PD. The results suggested that VNS might induce a modulation of power in the low beta range, a frequency band previously shown to be preferentially modulated by levodopa and DBS [[8]Oswal A. Beudel M. Zrinzo L. Limousin P. Hariz M. Foltynie T. Litvak V. Brown P. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson's disease.Brain. 2016; 139: 1482-1496Crossref PubMed Scopus (161) Google Scholar,[9]Priori A. Foffani G. Pesenti A. et al.Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson's disease.Exp Neurol. 2004; 189: 369-379Crossref PubMed Scopus (400) Google Scholar], and whose modulation has been associated with improvements of PD motor symptoms (i.e., rigidity, bradykinesia [[6]Wiest C. Tinkhauser G. Pogosyan A. Bange M. Muthuraman M. Groppa S. Baig F. Mostofi A. Pereira E.A. Tan H. Brown P. Torrecillos F. Local field potential activity dynamics in response to deep brain stimulation of the subthalamic nucleus in Parkinson's disease.Neurobiol Dis. 2020; 143105019https://doi.org/10.1016/j.nbd.2020.105019Crossref PubMed Scopus (30) Google Scholar,[10]Iskhakova L. Rappel P. Deffains M. Fonar G. Marmor O. Paz R. Israel Z. Eitan R. Bergman H. Modulation of dopamine tone induces frequency shifts in cortico-basal ganglia beta oscillations.Nat Commun. 2021; 12: 7026https://doi.org/10.1038/s41467-021-27375-5Crossref PubMed Scopus (25) Google Scholar]). Noteworthy, our results support the clinical benefits previously observed in patients with mild to moderate PD, in whom non-invasive cervical or auricular VNS were able to improve gait features such as step length and variability and stride velocity [1Mondal B. Choudhury S. Simon B. Baker M.R. Kumar H. Noninvasive vagus nerve stimulation improves gait and reduces freezing of gait in Parkinson's disease.Mov Disord. 2019; 34: 917-918https://doi.org/10.1002/mds.27662Crossref PubMed Scopus (28) Google Scholar, 2Morris R. Yarnall A.J. Hunter H. Taylor J.P. Baker M.R. Rochester L. Noninvasive vagus nerve stimulation to target gait impairment in Parkinson's disease.Mov Disord. 2019 Jun; 34: 918-919https://doi.org/10.1002/mds.27664Crossref PubMed Scopus (21) Google Scholar, 3Mondal B. Choudhury S. Banerjee R. Roy A. Chatterjee K. Basu P. Singh R. Halder S. Shubham S. Baker S.N. Baker M.R. Kumar H. Non-invasive vagus nerve stimulation improves clinical and molecular biomarkers of Parkinson's disease in patients with freezing of gait.NPJ Parkinsons Dis. 2021; 7: 46https://doi.org/10.1038/s41531-021-00190-xCrossref PubMed Scopus (20) Google Scholar,[11]Marano M. Anzini G. Musumeci G. Magliozzi A. Pozzilli V. Capone F. Di Lazzaro V. Transcutaneous auricular vagus stimulation improves gait and reaction time in Parkinson's disease.Mov Disord. 2022 Oct; 37 (Epub 2022 Jul 21): 2163-2164https://doi.org/10.1002/mds.29166Crossref PubMed Scopus (4) Google Scholar]. In line with this, low beta power has been previously associated with axial symptoms of PD, including gait [[12]Sharott A. Gulberti A. Zittel S. Tudor Jones A.A. Fickel U. Münchau A. Köppen J.A. Gerloff C. Westphal M. Buhmann C. Hamel W. Engel A.K. Moll C.K. Activity parameters of subthalamic nucleus neurons selectively predict motor symptom severity in Parkinson's disease.J Neurosci. 2014 Apr 30; 34: 6273-6285https://doi.org/10.1523/JNEUROSCI.1803-13.2014Crossref PubMed Scopus (128) Google Scholar]. Afferent vagus nerve fibres carry sensory inputs to the nucleus tractus Solitarii, which then mostly projects to the locus coeruleus, the raphe and parabrachial nuclei [[13]Hachem L.D. Wong S.M. Ibrahim G.M. The vagus afferent network: emerging role in translational connectomics.Neurosurg Focus. 2018; 45: E2Crossref PubMed Scopus (59) Google Scholar]. While the two first structures play an important role in the noradrenergic and serotonergic pathways, and are probably implicated in the antidepressant effect of VNS [[5]Badran B.W. Dowdle L.T. Mithoefer O.J. LaBate N.T. Coatsworth J. Brown J.C. DeVries W.H. Austelle C.W. McTeague L.M. George M.S. Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: a concurrent taVNS/fMRI study and review.Brain Stimul. 2018; 11: 492-500https://doi.org/10.1016/j.brs.2017.12.009Abstract Full Text Full Text PDF PubMed Scopus (160) Google Scholar], the latter connects the vagal afferents to the thalamus and the dopamine system [[7]Han W. Tellez L.A. Perkins M.H. Perez I.O. Qu T. Ferreira J. Ferreira T.L. Quinn D. Liu Z.W. Gao X.B. Kaelberer M.M. Bohórquez D.V. Shammah-Lagnado S.J. de Lartigue G. de Araujo I.E. A neural circuit for gut-induced reward.Cell. 2018; 175 (e23): 665-678https://doi.org/10.1016/j.cell.2018.08.049Abstract Full Text Full Text PDF PubMed Scopus (337) Google Scholar]. In line with this, it has recently been shown that VNS can modulate thalamic activity [[14]Nebras M. Warsi Han Yan Wong Simeon M. Yau Ivanna Breitbart Sara Go Cristina Gorodetsky Carolina Fasano Alfonso Kalia Suneil K. Rutka James T. Vaughan Kerry George M. Ibrahim,Vagus nerve stimulation modulates phase-amplitude coupling in thalamic local field potentials, neuromodulation. Technology at the Neural Interface, 2022https://doi.org/10.1016/j.neurom.2022.05.001Abstract Full Text Full Text PDF Scopus (2) Google Scholar]. This raises the possibility that 20Hz-VNS, by modulating the dopamine metabolism in the subcortical network, reduces the pathological STN activity and alleviate motor symptoms in PD. In contrast, direct stimulations of the STN or the primary motor cortex at 20Hz, which are associated with detrimental effects on motor performance, increase synchronization in the beta band [[15]Chen C.C. Litvak V. Gilbertson T. Kühn A. Lu C.S. Lee S.T. Tsai C.H. Tisch S. Limousin P. Hariz M. Brown P. Excessive synchronization of basal ganglia neurons at 20 Hz slows movement in Parkinson's disease.Exp Neurol. 2007 May; 205 (Epub 2007 Feb 6. PMID: 17335810): 214-221https://doi.org/10.1016/j.expneurol.2007.01.027Crossref PubMed Scopus (175) Google Scholar,[16]Pogosyan A. Gaynor L.D. Eusebio A. Brown P. Boosting cortical activity at beta-band frequencies slows movement in humans.Curr Biol. 2009; 19: 1-5Abstract Full Text Full Text PDF PubMed Scopus (444) Google Scholar]. This suggests that the known effect of 20 Hz VNS on promoting brain plasticity can happen without a direct entrainment of the motor network. Future studies using larger cohort and more controlled designs with also larger time series are warranted to confirm these preliminary results and investigate the link between the clinical effects and the neurophysiological changes induced by VNS at different stimulation parameters [[17]Farrand A.Q. Verner R.S. McGuire R.M. Helke K.L. Hinson V.K. Boger H.A. Differential effects of vagus nerve stimulation paradigms guide clinical development for Parkinson's disease.Brain Stimul. 2020; 13: 1323-1332https://doi.org/10.1016/j.brs.2020.06.078Abstract Full Text Full Text PDF PubMed Scopus (30) Google Scholar]. This will definitively open new pathways for the VNS as a possible alternative PD therapeutic neuromodulation strategy. This work was supported by the Medical Research Council." @default.
- W4310256171 created "2022-11-30" @default.
- W4310256171 creator A5002446423 @default.
- W4310256171 creator A5007188665 @default.
- W4310256171 creator A5014122281 @default.
- W4310256171 creator A5030848048 @default.
- W4310256171 creator A5049721325 @default.
- W4310256171 creator A5061590058 @default.
- W4310256171 creator A5087477752 @default.
- W4310256171 date "2022-11-01" @default.
- W4310256171 modified "2023-09-26" @default.
- W4310256171 title "Non-invasive vagus nerve stimulation modulates subthalamic beta activity in Parkinson's disease" @default.
- W4310256171 cites W2002699700 @default.
- W4310256171 cites W2020696324 @default.
- W4310256171 cites W2032337192 @default.
- W4310256171 cites W2048658576 @default.
- W4310256171 cites W21769058 @default.
- W4310256171 cites W2310916568 @default.
- W4310256171 cites W2747257419 @default.
- W4310256171 cites W2776458751 @default.
- W4310256171 cites W2889198010 @default.
- W4310256171 cites W2890470934 @default.
- W4310256171 cites W2921178430 @default.
- W4310256171 cites W2923045270 @default.
- W4310256171 cites W3040169574 @default.
- W4310256171 cites W3042523037 @default.
- W4310256171 cites W3163952664 @default.
- W4310256171 cites W3216071577 @default.
- W4310256171 cites W4285097670 @default.
- W4310256171 cites W4286493361 @default.
- W4310256171 doi "https://doi.org/10.1016/j.brs.2022.11.006" @default.
- W4310256171 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36518556" @default.
- W4310256171 hasPublicationYear "2022" @default.
- W4310256171 type Work @default.
- W4310256171 citedByCount "1" @default.
- W4310256171 countsByYear W43102561712023 @default.
- W4310256171 crossrefType "journal-article" @default.
- W4310256171 hasAuthorship W4310256171A5002446423 @default.
- W4310256171 hasAuthorship W4310256171A5007188665 @default.
- W4310256171 hasAuthorship W4310256171A5014122281 @default.
- W4310256171 hasAuthorship W4310256171A5030848048 @default.
- W4310256171 hasAuthorship W4310256171A5049721325 @default.
- W4310256171 hasAuthorship W4310256171A5061590058 @default.
- W4310256171 hasAuthorship W4310256171A5087477752 @default.
- W4310256171 hasBestOaLocation W43102561711 @default.
- W4310256171 hasConcept C126322002 @default.
- W4310256171 hasConcept C15744967 @default.
- W4310256171 hasConcept C169760540 @default.
- W4310256171 hasConcept C199360897 @default.
- W4310256171 hasConcept C24998067 @default.
- W4310256171 hasConcept C2776174256 @default.
- W4310256171 hasConcept C2777319143 @default.
- W4310256171 hasConcept C2778542668 @default.
- W4310256171 hasConcept C2779134260 @default.
- W4310256171 hasConcept C2779734285 @default.
- W4310256171 hasConcept C2780087125 @default.
- W4310256171 hasConcept C2781404750 @default.
- W4310256171 hasConcept C2910144760 @default.
- W4310256171 hasConcept C41008148 @default.
- W4310256171 hasConcept C522805319 @default.
- W4310256171 hasConcept C71924100 @default.
- W4310256171 hasConceptScore W4310256171C126322002 @default.
- W4310256171 hasConceptScore W4310256171C15744967 @default.
- W4310256171 hasConceptScore W4310256171C169760540 @default.
- W4310256171 hasConceptScore W4310256171C199360897 @default.
- W4310256171 hasConceptScore W4310256171C24998067 @default.
- W4310256171 hasConceptScore W4310256171C2776174256 @default.
- W4310256171 hasConceptScore W4310256171C2777319143 @default.
- W4310256171 hasConceptScore W4310256171C2778542668 @default.
- W4310256171 hasConceptScore W4310256171C2779134260 @default.
- W4310256171 hasConceptScore W4310256171C2779734285 @default.
- W4310256171 hasConceptScore W4310256171C2780087125 @default.
- W4310256171 hasConceptScore W4310256171C2781404750 @default.
- W4310256171 hasConceptScore W4310256171C2910144760 @default.
- W4310256171 hasConceptScore W4310256171C41008148 @default.
- W4310256171 hasConceptScore W4310256171C522805319 @default.
- W4310256171 hasConceptScore W4310256171C71924100 @default.
- W4310256171 hasFunder F4320334626 @default.
- W4310256171 hasIssue "6" @default.
- W4310256171 hasLocation W43102561711 @default.
- W4310256171 hasLocation W43102561712 @default.
- W4310256171 hasLocation W43102561713 @default.
- W4310256171 hasOpenAccess W4310256171 @default.
- W4310256171 hasPrimaryLocation W43102561711 @default.
- W4310256171 hasRelatedWork W1907079177 @default.
- W4310256171 hasRelatedWork W2067979784 @default.
- W4310256171 hasRelatedWork W2347819598 @default.
- W4310256171 hasRelatedWork W2548812067 @default.
- W4310256171 hasRelatedWork W2598429580 @default.
- W4310256171 hasRelatedWork W3042523037 @default.
- W4310256171 hasRelatedWork W3205902602 @default.
- W4310256171 hasRelatedWork W4225275255 @default.
- W4310256171 hasRelatedWork W4226437583 @default.
- W4310256171 hasRelatedWork W83104667 @default.
- W4310256171 hasVolume "15" @default.
- W4310256171 isParatext "false" @default.
- W4310256171 isRetracted "false" @default.
- W4310256171 workType "article" @default.