Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310257729> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4310257729 endingPage "183" @default.
- W4310257729 startingPage "173" @default.
- W4310257729 abstract "As we all are aware of the fact that India's population is increasing expeditiously, automatic diagnosis of diseases is now crucial topic in medical sciences. Coronavirus has expanded massively, and it is among the one of the most frightful and dangerous infection in latest years. The deadly virus was found in China first, and then, it mutated throughout the world. Hence, automated illness identification provides results that are uniform and quick, and thus, mortality rate can be reduced. Most of countries including ours (India) suffers from lack of testing kits whenever new wave of COVID hits. Therefore, many researchers worked on various deep learning based, machine learning-based approaches for diagnosis of this virus using X-rays and CT scans of lungs. So far, it has affected over 50.9 crore people and caused the deaths of 62.2 lakhs people. Here, in this study, comprehensive survey of fifteen studies is presented where various deep learning, and transfer learning approaches are compared for their efficiency and accuracy. The goal of study here is to inspect and analyse various deep learning models including transfer learning models used, also explore the datasets used, preprocessing techniques used, and compare these models to find which model provide us with optimal and best results. The study can help in smooth implementation of the suggested work in future which can be further, then fine-tuned to get the best results possible. Deep learning provides an easy solution to the COVID problem as they perform best in detection and evaluation. It is found during this study that CNN model hybridized with other models provide better accuracy then CNN alone. Ensemble learning methods also improves the accuracy. Also, before training any model dataset acquired need to be preprocessed." @default.
- W4310257729 created "2022-11-30" @default.
- W4310257729 creator A5006338943 @default.
- W4310257729 creator A5045561587 @default.
- W4310257729 date "2022-11-25" @default.
- W4310257729 modified "2023-09-30" @default.
- W4310257729 title "Detection of COVID Using Deep Learning: A Review" @default.
- W4310257729 cites W3013601031 @default.
- W4310257729 cites W3017403618 @default.
- W4310257729 cites W3033616466 @default.
- W4310257729 cites W3048749423 @default.
- W4310257729 cites W3091787675 @default.
- W4310257729 cites W3100866969 @default.
- W4310257729 cites W3106225991 @default.
- W4310257729 cites W3135869946 @default.
- W4310257729 cites W3137180645 @default.
- W4310257729 cites W3160725687 @default.
- W4310257729 cites W3163101675 @default.
- W4310257729 cites W3182025718 @default.
- W4310257729 cites W3192433980 @default.
- W4310257729 doi "https://doi.org/10.1007/978-981-19-5292-0_16" @default.
- W4310257729 hasPublicationYear "2022" @default.
- W4310257729 type Work @default.
- W4310257729 citedByCount "0" @default.
- W4310257729 crossrefType "book-chapter" @default.
- W4310257729 hasAuthorship W4310257729A5006338943 @default.
- W4310257729 hasAuthorship W4310257729A5045561587 @default.
- W4310257729 hasConcept C108583219 @default.
- W4310257729 hasConcept C116834253 @default.
- W4310257729 hasConcept C119857082 @default.
- W4310257729 hasConcept C142724271 @default.
- W4310257729 hasConcept C150899416 @default.
- W4310257729 hasConcept C154945302 @default.
- W4310257729 hasConcept C2779134260 @default.
- W4310257729 hasConcept C2908647359 @default.
- W4310257729 hasConcept C3008058167 @default.
- W4310257729 hasConcept C34736171 @default.
- W4310257729 hasConcept C41008148 @default.
- W4310257729 hasConcept C524204448 @default.
- W4310257729 hasConcept C59822182 @default.
- W4310257729 hasConcept C71924100 @default.
- W4310257729 hasConcept C86803240 @default.
- W4310257729 hasConcept C99454951 @default.
- W4310257729 hasConceptScore W4310257729C108583219 @default.
- W4310257729 hasConceptScore W4310257729C116834253 @default.
- W4310257729 hasConceptScore W4310257729C119857082 @default.
- W4310257729 hasConceptScore W4310257729C142724271 @default.
- W4310257729 hasConceptScore W4310257729C150899416 @default.
- W4310257729 hasConceptScore W4310257729C154945302 @default.
- W4310257729 hasConceptScore W4310257729C2779134260 @default.
- W4310257729 hasConceptScore W4310257729C2908647359 @default.
- W4310257729 hasConceptScore W4310257729C3008058167 @default.
- W4310257729 hasConceptScore W4310257729C34736171 @default.
- W4310257729 hasConceptScore W4310257729C41008148 @default.
- W4310257729 hasConceptScore W4310257729C524204448 @default.
- W4310257729 hasConceptScore W4310257729C59822182 @default.
- W4310257729 hasConceptScore W4310257729C71924100 @default.
- W4310257729 hasConceptScore W4310257729C86803240 @default.
- W4310257729 hasConceptScore W4310257729C99454951 @default.
- W4310257729 hasLocation W43102577291 @default.
- W4310257729 hasOpenAccess W4310257729 @default.
- W4310257729 hasPrimaryLocation W43102577291 @default.
- W4310257729 hasRelatedWork W2946016983 @default.
- W4310257729 hasRelatedWork W2960456850 @default.
- W4310257729 hasRelatedWork W3195938642 @default.
- W4310257729 hasRelatedWork W4213299466 @default.
- W4310257729 hasRelatedWork W4312200629 @default.
- W4310257729 hasRelatedWork W4312685930 @default.
- W4310257729 hasRelatedWork W4317565044 @default.
- W4310257729 hasRelatedWork W4318834068 @default.
- W4310257729 hasRelatedWork W4318957922 @default.
- W4310257729 hasRelatedWork W4322727400 @default.
- W4310257729 isParatext "false" @default.
- W4310257729 isRetracted "false" @default.
- W4310257729 workType "book-chapter" @default.