Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310259063> ?p ?o ?g. }
- W4310259063 endingPage "3434" @default.
- W4310259063 startingPage "3414" @default.
- W4310259063 abstract "Abstract Regional seismic loss assessment is essential for developing an emergency response plan in the event of an earthquake, which can reduce casualties and socioeconomic losses in an urban community. The uncertainties and correlations of structures’ engineering demand parameters (EDP) should be adequately considered to evaluate the community‐level seismic risk. Recently, the authors proposed an incremental dynamic analysis‐based method and regression‐based models to estimate the variances and correlations of residuals in EDP termed “EDP residuals.” The quantified uncertainties of the EDP residuals facilitate the accurate evaluation of the regional seismic performance. Still, the computational cost required in the estimation process makes its application a challenge. This study proposes two frameworks for regional seismic loss assessment based on deep neural networks (DNNs) to extend the applicability of EDP residual estimation and improve its accuracy. The first framework estimates the EDP residuals of buildings by combining the EDP residuals of various single‐degree‐of‐freedom (SDOF) systems through the modal combination rules. Three DNN models are constructed to predict the EDP residuals of SDOF systems. The second framework predicts the EDP residuals of buildings directly using two DNN models. The proposed frameworks are verified by numerical examples of regional seismic loss assessment, for which time history‐based “exact” solutions exist. The supporting source code, data, and trained models are available for download at https://github.com/TyongKim/EDP_residual . Highlights The importance of considering EDP residual correlation in seismic system reliability analysis is demonstrated. Two DNN‐based frameworks are developed to estimate EDP residuals of building structures. Modal combination rule is employed to utilize EDP residuals of SDOF systems representing structural modes. DNN models are constructed to predict EDP residuals of SDOF and MDOF systems. Accuracy and applicability of DNN‐based frameworks are successfully demonstrated by example of regional seismic loss assessment." @default.
- W4310259063 created "2022-11-30" @default.
- W4310259063 creator A5000032597 @default.
- W4310259063 creator A5043428075 @default.
- W4310259063 creator A5050921897 @default.
- W4310259063 creator A5081289911 @default.
- W4310259063 date "2022-11-29" @default.
- W4310259063 modified "2023-09-23" @default.
- W4310259063 title "Deep neural network‐based regional seismic loss assessment considering correlation between EDP residuals of building structures" @default.
- W4310259063 cites W1514610356 @default.
- W4310259063 cites W1728069313 @default.
- W4310259063 cites W1826259514 @default.
- W4310259063 cites W1957112966 @default.
- W4310259063 cites W2014965310 @default.
- W4310259063 cites W2039022273 @default.
- W4310259063 cites W2063947461 @default.
- W4310259063 cites W2064528279 @default.
- W4310259063 cites W2076073049 @default.
- W4310259063 cites W2076739712 @default.
- W4310259063 cites W2082179468 @default.
- W4310259063 cites W2090782044 @default.
- W4310259063 cites W2108107997 @default.
- W4310259063 cites W2111959010 @default.
- W4310259063 cites W2115985071 @default.
- W4310259063 cites W2127765052 @default.
- W4310259063 cites W2129780039 @default.
- W4310259063 cites W2149685728 @default.
- W4310259063 cites W2157501616 @default.
- W4310259063 cites W2160711557 @default.
- W4310259063 cites W2162174569 @default.
- W4310259063 cites W2167996923 @default.
- W4310259063 cites W2171949798 @default.
- W4310259063 cites W2593192889 @default.
- W4310259063 cites W2903856671 @default.
- W4310259063 cites W2906059356 @default.
- W4310259063 cites W2999473454 @default.
- W4310259063 cites W3008799350 @default.
- W4310259063 cites W3018928030 @default.
- W4310259063 cites W3039164877 @default.
- W4310259063 cites W3094556617 @default.
- W4310259063 cites W3192294368 @default.
- W4310259063 cites W4200006172 @default.
- W4310259063 cites W4224219507 @default.
- W4310259063 doi "https://doi.org/10.1002/eqe.3775" @default.
- W4310259063 hasPublicationYear "2022" @default.
- W4310259063 type Work @default.
- W4310259063 citedByCount "1" @default.
- W4310259063 countsByYear W43102590632023 @default.
- W4310259063 crossrefType "journal-article" @default.
- W4310259063 hasAuthorship W4310259063A5000032597 @default.
- W4310259063 hasAuthorship W4310259063A5043428075 @default.
- W4310259063 hasAuthorship W4310259063A5050921897 @default.
- W4310259063 hasAuthorship W4310259063A5081289911 @default.
- W4310259063 hasConcept C111919701 @default.
- W4310259063 hasConcept C11413529 @default.
- W4310259063 hasConcept C119857082 @default.
- W4310259063 hasConcept C121332964 @default.
- W4310259063 hasConcept C124101348 @default.
- W4310259063 hasConcept C127413603 @default.
- W4310259063 hasConcept C134512083 @default.
- W4310259063 hasConcept C147176958 @default.
- W4310259063 hasConcept C155512373 @default.
- W4310259063 hasConcept C163258240 @default.
- W4310259063 hasConcept C185592680 @default.
- W4310259063 hasConcept C188027245 @default.
- W4310259063 hasConcept C200601418 @default.
- W4310259063 hasConcept C41008148 @default.
- W4310259063 hasConcept C43214815 @default.
- W4310259063 hasConcept C50644808 @default.
- W4310259063 hasConcept C62520636 @default.
- W4310259063 hasConcept C71139939 @default.
- W4310259063 hasConcept C98045186 @default.
- W4310259063 hasConceptScore W4310259063C111919701 @default.
- W4310259063 hasConceptScore W4310259063C11413529 @default.
- W4310259063 hasConceptScore W4310259063C119857082 @default.
- W4310259063 hasConceptScore W4310259063C121332964 @default.
- W4310259063 hasConceptScore W4310259063C124101348 @default.
- W4310259063 hasConceptScore W4310259063C127413603 @default.
- W4310259063 hasConceptScore W4310259063C134512083 @default.
- W4310259063 hasConceptScore W4310259063C147176958 @default.
- W4310259063 hasConceptScore W4310259063C155512373 @default.
- W4310259063 hasConceptScore W4310259063C163258240 @default.
- W4310259063 hasConceptScore W4310259063C185592680 @default.
- W4310259063 hasConceptScore W4310259063C188027245 @default.
- W4310259063 hasConceptScore W4310259063C200601418 @default.
- W4310259063 hasConceptScore W4310259063C41008148 @default.
- W4310259063 hasConceptScore W4310259063C43214815 @default.
- W4310259063 hasConceptScore W4310259063C50644808 @default.
- W4310259063 hasConceptScore W4310259063C62520636 @default.
- W4310259063 hasConceptScore W4310259063C71139939 @default.
- W4310259063 hasConceptScore W4310259063C98045186 @default.
- W4310259063 hasFunder F4320322730 @default.
- W4310259063 hasIssue "11" @default.
- W4310259063 hasLocation W43102590631 @default.
- W4310259063 hasOpenAccess W4310259063 @default.
- W4310259063 hasPrimaryLocation W43102590631 @default.
- W4310259063 hasRelatedWork W2015799581 @default.
- W4310259063 hasRelatedWork W2019501673 @default.