Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310259634> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4310259634 abstract "Accurate travel time estimation is paramount for providing transit users with reliable schedules and dependable real-time information. This paper is the first to utilize roadside urban imagery for direct transit travel time prediction. We propose and evaluate an end-to-end framework integrating traditional transit data sources with a roadside camera for automated roadside image data acquisition, labeling, and model training to predict transit travel times across a segment of interest. First, we show how the GTFS real-time data can be utilized as an efficient activation mechanism for a roadside camera unit monitoring a segment of interest. Second, AVL data is utilized to generate ground truth labels for the acquired images based on the observed transit travel time percentiles across the camera-monitored segment during the time of image acquisition. Finally, the generated labeled image dataset is used to train and thoroughly evaluate a Vision Transformer (ViT) model to predict a discrete transit travel time range (band). The results illustrate that the ViT model is able to learn image features and contents that best help it deduce the expected travel time range with an average validation accuracy ranging between 80%-85%. We assess the interpretability of the ViT model's predictions and showcase how this discrete travel time band prediction can subsequently improve continuous transit travel time estimation. The workflow and results presented in this study provide an end-to-end, scalable, automated, and highly efficient approach for integrating traditional transit data sources and roadside imagery to improve the estimation of transit travel duration. This work also demonstrates the value of incorporating real-time information from computer-vision sources, which are becoming increasingly accessible and can have major implications for improving operations and passenger real-time information." @default.
- W4310259634 created "2022-11-30" @default.
- W4310259634 creator A5036352331 @default.
- W4310259634 creator A5037811490 @default.
- W4310259634 date "2022-11-22" @default.
- W4310259634 modified "2023-09-27" @default.
- W4310259634 title "Computer Vision for Transit Travel Time Prediction: An End-to-End Framework Using Roadside Urban Imagery" @default.
- W4310259634 doi "https://doi.org/10.48550/arxiv.2211.12322" @default.
- W4310259634 hasPublicationYear "2022" @default.
- W4310259634 type Work @default.
- W4310259634 citedByCount "0" @default.
- W4310259634 crossrefType "posted-content" @default.
- W4310259634 hasAuthorship W4310259634A5036352331 @default.
- W4310259634 hasAuthorship W4310259634A5037811490 @default.
- W4310259634 hasBestOaLocation W43102596341 @default.
- W4310259634 hasConcept C115051666 @default.
- W4310259634 hasConcept C127413603 @default.
- W4310259634 hasConcept C146849305 @default.
- W4310259634 hasConcept C146978453 @default.
- W4310259634 hasConcept C154945302 @default.
- W4310259634 hasConcept C204323151 @default.
- W4310259634 hasConcept C22212356 @default.
- W4310259634 hasConcept C2778022998 @default.
- W4310259634 hasConcept C2781067378 @default.
- W4310259634 hasConcept C31972630 @default.
- W4310259634 hasConcept C41008148 @default.
- W4310259634 hasConcept C539828613 @default.
- W4310259634 hasConcept C76155785 @default.
- W4310259634 hasConcept C79403827 @default.
- W4310259634 hasConceptScore W4310259634C115051666 @default.
- W4310259634 hasConceptScore W4310259634C127413603 @default.
- W4310259634 hasConceptScore W4310259634C146849305 @default.
- W4310259634 hasConceptScore W4310259634C146978453 @default.
- W4310259634 hasConceptScore W4310259634C154945302 @default.
- W4310259634 hasConceptScore W4310259634C204323151 @default.
- W4310259634 hasConceptScore W4310259634C22212356 @default.
- W4310259634 hasConceptScore W4310259634C2778022998 @default.
- W4310259634 hasConceptScore W4310259634C2781067378 @default.
- W4310259634 hasConceptScore W4310259634C31972630 @default.
- W4310259634 hasConceptScore W4310259634C41008148 @default.
- W4310259634 hasConceptScore W4310259634C539828613 @default.
- W4310259634 hasConceptScore W4310259634C76155785 @default.
- W4310259634 hasConceptScore W4310259634C79403827 @default.
- W4310259634 hasLocation W43102596341 @default.
- W4310259634 hasOpenAccess W4310259634 @default.
- W4310259634 hasPrimaryLocation W43102596341 @default.
- W4310259634 hasRelatedWork W126849150 @default.
- W4310259634 hasRelatedWork W1632903234 @default.
- W4310259634 hasRelatedWork W1921586410 @default.
- W4310259634 hasRelatedWork W2056878947 @default.
- W4310259634 hasRelatedWork W2082701464 @default.
- W4310259634 hasRelatedWork W2088386439 @default.
- W4310259634 hasRelatedWork W2157822554 @default.
- W4310259634 hasRelatedWork W2716174519 @default.
- W4310259634 hasRelatedWork W2914179169 @default.
- W4310259634 hasRelatedWork W3004045746 @default.
- W4310259634 isParatext "false" @default.
- W4310259634 isRetracted "false" @default.
- W4310259634 workType "article" @default.