Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310261170> ?p ?o ?g. }
- W4310261170 endingPage "104303" @default.
- W4310261170 startingPage "104303" @default.
- W4310261170 abstract "The present work implements a compressible Volume of Fluid (VOF) – Lagrangian Particle Tracking (LPT) coupled solver in OpenFOAM and utilizes it to simulate a liquid jet in crossflow (LJICF) numerically. This methodology helps accurately predict a complex primary breakup in the Eulerian framework and the secondary atomization of spherical droplets using a computationally efficient LPT method. The coupled solver with Adaptive Mesh Refinement (AMR) is rigorously validated for a liquid jet in crossflow at varying operating conditions – pressure, crossflow velocity, and inlet liquid jet velocity. We have further carried out a thorough investigation to study the effect of momentum flux ratio and weber number on the various flow features and liquid jet break-up phenomenon in a crossflow while identifying the stream-wise location of the liquid jet breakup region. At low momentum flux ratios in the bag breakup regime, the predictions reveal that the liquid jet breakup occurs due to the growth of similar instability as usually observed in the high-speed liquid sheet atomization. The short wavelength assumption of the inviscid dispersion relation resembles the Kelvin-Helmholtz type instability observed in this case, as opposed to Rayleigh-Taylor instability at high momentum flux ratio in the surface breakup regime. It is also proposed that the shear breakup along the transverse edges of the liquid column occurs due to the shear layer instability of the air passing around the liquid column. The simulation wavelength closely matches the Williamson correlation for shear layer instability around cylinders – a shape similar to the cross-section of the bottom of the liquid column. The results show a distinct streamer or bifurcation phenomenon at low momentum flux ratios and moderate weber numbers. Further investigation suggests that the internal liquid boundary layer and the three-dimensional flow field behind the liquid jet are responsible for streamer formation." @default.
- W4310261170 created "2022-11-30" @default.
- W4310261170 creator A5015362207 @default.
- W4310261170 creator A5017609259 @default.
- W4310261170 creator A5055366598 @default.
- W4310261170 date "2023-02-01" @default.
- W4310261170 modified "2023-09-27" @default.
- W4310261170 title "Understanding the liquid jet break-up in various regimes at elevated pressure using a compressible VOF-LPT coupled framework" @default.
- W4310261170 cites W1255811228 @default.
- W4310261170 cites W1965092024 @default.
- W4310261170 cites W1972437078 @default.
- W4310261170 cites W1973857945 @default.
- W4310261170 cites W1975943852 @default.
- W4310261170 cites W1983984048 @default.
- W4310261170 cites W1995865745 @default.
- W4310261170 cites W1999400112 @default.
- W4310261170 cites W2000362726 @default.
- W4310261170 cites W2023248330 @default.
- W4310261170 cites W2025348341 @default.
- W4310261170 cites W2026934818 @default.
- W4310261170 cites W2027874434 @default.
- W4310261170 cites W2029686708 @default.
- W4310261170 cites W2032073910 @default.
- W4310261170 cites W2052323603 @default.
- W4310261170 cites W2052344452 @default.
- W4310261170 cites W2054286780 @default.
- W4310261170 cites W2060786385 @default.
- W4310261170 cites W2074447412 @default.
- W4310261170 cites W2074617505 @default.
- W4310261170 cites W2080832731 @default.
- W4310261170 cites W2080922987 @default.
- W4310261170 cites W2085623372 @default.
- W4310261170 cites W2092886188 @default.
- W4310261170 cites W2094132272 @default.
- W4310261170 cites W2102403764 @default.
- W4310261170 cites W2110187357 @default.
- W4310261170 cites W2113117951 @default.
- W4310261170 cites W2117194514 @default.
- W4310261170 cites W2132478826 @default.
- W4310261170 cites W2160428180 @default.
- W4310261170 cites W2290097180 @default.
- W4310261170 cites W2335580459 @default.
- W4310261170 cites W2490095734 @default.
- W4310261170 cites W2602449918 @default.
- W4310261170 cites W2782650318 @default.
- W4310261170 cites W2913561434 @default.
- W4310261170 cites W2921965801 @default.
- W4310261170 cites W3019240653 @default.
- W4310261170 cites W3021843336 @default.
- W4310261170 cites W3106467376 @default.
- W4310261170 doi "https://doi.org/10.1016/j.ijmultiphaseflow.2022.104303" @default.
- W4310261170 hasPublicationYear "2023" @default.
- W4310261170 type Work @default.
- W4310261170 citedByCount "0" @default.
- W4310261170 crossrefType "journal-article" @default.
- W4310261170 hasAuthorship W4310261170A5015362207 @default.
- W4310261170 hasAuthorship W4310261170A5017609259 @default.
- W4310261170 hasAuthorship W4310261170A5055366598 @default.
- W4310261170 hasBestOaLocation W43102611702 @default.
- W4310261170 hasConcept C10138342 @default.
- W4310261170 hasConcept C119947313 @default.
- W4310261170 hasConcept C121332964 @default.
- W4310261170 hasConcept C127210992 @default.
- W4310261170 hasConcept C159275676 @default.
- W4310261170 hasConcept C162324750 @default.
- W4310261170 hasConcept C182748727 @default.
- W4310261170 hasConcept C196558001 @default.
- W4310261170 hasConcept C207821765 @default.
- W4310261170 hasConcept C2777871205 @default.
- W4310261170 hasConcept C57879066 @default.
- W4310261170 hasConcept C60718061 @default.
- W4310261170 hasConcept C74650414 @default.
- W4310261170 hasConcept C86252789 @default.
- W4310261170 hasConceptScore W4310261170C10138342 @default.
- W4310261170 hasConceptScore W4310261170C119947313 @default.
- W4310261170 hasConceptScore W4310261170C121332964 @default.
- W4310261170 hasConceptScore W4310261170C127210992 @default.
- W4310261170 hasConceptScore W4310261170C159275676 @default.
- W4310261170 hasConceptScore W4310261170C162324750 @default.
- W4310261170 hasConceptScore W4310261170C182748727 @default.
- W4310261170 hasConceptScore W4310261170C196558001 @default.
- W4310261170 hasConceptScore W4310261170C207821765 @default.
- W4310261170 hasConceptScore W4310261170C2777871205 @default.
- W4310261170 hasConceptScore W4310261170C57879066 @default.
- W4310261170 hasConceptScore W4310261170C60718061 @default.
- W4310261170 hasConceptScore W4310261170C74650414 @default.
- W4310261170 hasConceptScore W4310261170C86252789 @default.
- W4310261170 hasFunder F4320320719 @default.
- W4310261170 hasFunder F4320325255 @default.
- W4310261170 hasLocation W43102611701 @default.
- W4310261170 hasLocation W43102611702 @default.
- W4310261170 hasOpenAccess W4310261170 @default.
- W4310261170 hasPrimaryLocation W43102611701 @default.
- W4310261170 hasRelatedWork W1608003562 @default.
- W4310261170 hasRelatedWork W1982591158 @default.
- W4310261170 hasRelatedWork W2025440582 @default.
- W4310261170 hasRelatedWork W2038550146 @default.
- W4310261170 hasRelatedWork W2110505413 @default.