Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310261818> ?p ?o ?g. }
- W4310261818 endingPage "102707" @default.
- W4310261818 startingPage "102707" @default.
- W4310261818 abstract "Resting-state functional magnetic resonance imaging (rs-fMRI) data have been widely used for automated diagnosis of brain disorders such as major depressive disorder (MDD) to assist in timely intervention. Multi-site fMRI data have been increasingly employed to augment sample size and improve statistical power for investigating MDD. However, previous studies usually suffer from significant inter-site heterogeneity caused for instance by differences in scanners and/or scanning protocols. To address this issue, we develop a novel discrepancy-based unsupervised cross-domain fMRI adaptation framework (called UFA-Net) for automated MDD identification. The proposed UFA-Net is designed to model spatio-temporal fMRI patterns of labeled source and unlabeled target samples via an attention-guided graph convolution module, and also leverage a maximum mean discrepancy constrained module for unsupervised cross-site feature alignment between two domains. To the best of our knowledge, this is one of the first attempts to explore unsupervised rs-fMRI adaptation for cross-site MDD identification. Extensive evaluation on 681 subjects from two imaging sites shows that the proposed method outperforms several state-of-the-art methods. Our method helps localize disease-associated functional connectivity abnormalities and is therefore well interpretable and can facilitate fMRI-based analysis of MDD in clinical practice." @default.
- W4310261818 created "2022-11-30" @default.
- W4310261818 creator A5022544259 @default.
- W4310261818 creator A5031467394 @default.
- W4310261818 creator A5033256088 @default.
- W4310261818 creator A5050560717 @default.
- W4310261818 date "2023-02-01" @default.
- W4310261818 modified "2023-10-13" @default.
- W4310261818 title "Unsupervised cross-domain functional MRI adaptation for automated major depressive disorder identification" @default.
- W4310261818 cites W1195446513 @default.
- W4310261818 cites W1736658383 @default.
- W4310261818 cites W1967013191 @default.
- W4310261818 cites W1977921573 @default.
- W4310261818 cites W2006624654 @default.
- W4310261818 cites W2007022499 @default.
- W4310261818 cites W2057550180 @default.
- W4310261818 cites W2061600075 @default.
- W4310261818 cites W2063404606 @default.
- W4310261818 cites W2065953611 @default.
- W4310261818 cites W2078524519 @default.
- W4310261818 cites W2087489956 @default.
- W4310261818 cites W2107342601 @default.
- W4310261818 cites W2115403315 @default.
- W4310261818 cites W2139031580 @default.
- W4310261818 cites W2157607979 @default.
- W4310261818 cites W2161132782 @default.
- W4310261818 cites W2167822639 @default.
- W4310261818 cites W2189725743 @default.
- W4310261818 cites W2200029319 @default.
- W4310261818 cites W2216561202 @default.
- W4310261818 cites W2292313401 @default.
- W4310261818 cites W2463204958 @default.
- W4310261818 cites W2497216955 @default.
- W4310261818 cites W2560565629 @default.
- W4310261818 cites W2564138478 @default.
- W4310261818 cites W2606285249 @default.
- W4310261818 cites W2606713734 @default.
- W4310261818 cites W2736056391 @default.
- W4310261818 cites W2751527031 @default.
- W4310261818 cites W2765366332 @default.
- W4310261818 cites W2887501928 @default.
- W4310261818 cites W2888659919 @default.
- W4310261818 cites W2889753628 @default.
- W4310261818 cites W2896764513 @default.
- W4310261818 cites W2921224201 @default.
- W4310261818 cites W2949118732 @default.
- W4310261818 cites W2950976169 @default.
- W4310261818 cites W2963076818 @default.
- W4310261818 cites W2966036416 @default.
- W4310261818 cites W2973148618 @default.
- W4310261818 cites W2979509742 @default.
- W4310261818 cites W2979847772 @default.
- W4310261818 cites W2996948187 @default.
- W4310261818 cites W2998642388 @default.
- W4310261818 cites W3016410370 @default.
- W4310261818 cites W3018516499 @default.
- W4310261818 cites W3019119961 @default.
- W4310261818 cites W3040685212 @default.
- W4310261818 cites W3081200629 @default.
- W4310261818 cites W3089503988 @default.
- W4310261818 cites W3089595613 @default.
- W4310261818 cites W3091005297 @default.
- W4310261818 cites W3099526918 @default.
- W4310261818 cites W3111651141 @default.
- W4310261818 cites W3112718848 @default.
- W4310261818 cites W3112952980 @default.
- W4310261818 cites W3122732550 @default.
- W4310261818 cites W3160521808 @default.
- W4310261818 cites W3161149741 @default.
- W4310261818 cites W3184298244 @default.
- W4310261818 cites W3212752056 @default.
- W4310261818 cites W4213328656 @default.
- W4310261818 cites W4244883719 @default.
- W4310261818 cites W4289639938 @default.
- W4310261818 doi "https://doi.org/10.1016/j.media.2022.102707" @default.
- W4310261818 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36512941" @default.
- W4310261818 hasPublicationYear "2023" @default.
- W4310261818 type Work @default.
- W4310261818 citedByCount "3" @default.
- W4310261818 countsByYear W43102618182023 @default.
- W4310261818 crossrefType "journal-article" @default.
- W4310261818 hasAuthorship W4310261818A5022544259 @default.
- W4310261818 hasAuthorship W4310261818A5031467394 @default.
- W4310261818 hasAuthorship W4310261818A5033256088 @default.
- W4310261818 hasAuthorship W4310261818A5050560717 @default.
- W4310261818 hasConcept C116834253 @default.
- W4310261818 hasConcept C119857082 @default.
- W4310261818 hasConcept C139807058 @default.
- W4310261818 hasConcept C153083717 @default.
- W4310261818 hasConcept C153180895 @default.
- W4310261818 hasConcept C154945302 @default.
- W4310261818 hasConcept C15744967 @default.
- W4310261818 hasConcept C169760540 @default.
- W4310261818 hasConcept C169900460 @default.
- W4310261818 hasConcept C2779226451 @default.
- W4310261818 hasConcept C2780051608 @default.
- W4310261818 hasConcept C41008148 @default.
- W4310261818 hasConcept C59822182 @default.