Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310262023> ?p ?o ?g. }
- W4310262023 endingPage "128353" @default.
- W4310262023 startingPage "128353" @default.
- W4310262023 abstract "Identifying influential spreaders in complex networks is a crucial issue that can help control the propagation process in complex networks. Existing methods propose substantial improvements over many classical centrality methods. Over the years, some researchers have applied concepts of graph energy to node recognition. Based on this, we propose a new node centrality — the third Laplacian energy centrality (LC). This method is to define the centrality of nodes from a global perspective and can be simplified into a local formula while inheriting the advantages of the global property, which greatly reduces the time complexity. By assuming that the propagation process in the network follows a susceptible–infected–recovery (SIR) model, we conduct extensive experiments in 13 real networks, and compare the performance of LC with a range of other centrality measures. The results show that LC is more reasonable and superior than other methods in identifying influential spreaders." @default.
- W4310262023 created "2022-11-30" @default.
- W4310262023 creator A5064830552 @default.
- W4310262023 creator A5078886018 @default.
- W4310262023 date "2023-01-01" @default.
- W4310262023 modified "2023-10-15" @default.
- W4310262023 title "Identification of node centrality based on Laplacian energy of networks" @default.
- W4310262023 cites W1922704722 @default.
- W4310262023 cites W1967570846 @default.
- W4310262023 cites W1970913835 @default.
- W4310262023 cites W1971937094 @default.
- W4310262023 cites W1985451470 @default.
- W4310262023 cites W1985514943 @default.
- W4310262023 cites W1985625141 @default.
- W4310262023 cites W1990657247 @default.
- W4310262023 cites W2008167229 @default.
- W4310262023 cites W2013746780 @default.
- W4310262023 cites W2015953751 @default.
- W4310262023 cites W2023360870 @default.
- W4310262023 cites W2056944867 @default.
- W4310262023 cites W2069237767 @default.
- W4310262023 cites W2077716286 @default.
- W4310262023 cites W2089125183 @default.
- W4310262023 cites W2094234423 @default.
- W4310262023 cites W2096526352 @default.
- W4310262023 cites W2108614537 @default.
- W4310262023 cites W2111347279 @default.
- W4310262023 cites W2113330929 @default.
- W4310262023 cites W2121470019 @default.
- W4310262023 cites W2153624566 @default.
- W4310262023 cites W2155167324 @default.
- W4310262023 cites W2158908968 @default.
- W4310262023 cites W2752037010 @default.
- W4310262023 cites W2785443511 @default.
- W4310262023 cites W2889784066 @default.
- W4310262023 cites W2911115880 @default.
- W4310262023 cites W2943571863 @default.
- W4310262023 cites W2948445876 @default.
- W4310262023 cites W2967080394 @default.
- W4310262023 cites W2976298990 @default.
- W4310262023 cites W2977921098 @default.
- W4310262023 cites W3012393663 @default.
- W4310262023 cites W3049153990 @default.
- W4310262023 cites W3100069540 @default.
- W4310262023 cites W3100761875 @default.
- W4310262023 cites W3101413764 @default.
- W4310262023 cites W3104268829 @default.
- W4310262023 cites W3129433809 @default.
- W4310262023 cites W3214372623 @default.
- W4310262023 cites W4220666938 @default.
- W4310262023 doi "https://doi.org/10.1016/j.physa.2022.128353" @default.
- W4310262023 hasPublicationYear "2023" @default.
- W4310262023 type Work @default.
- W4310262023 citedByCount "3" @default.
- W4310262023 countsByYear W43102620232023 @default.
- W4310262023 crossrefType "journal-article" @default.
- W4310262023 hasAuthorship W4310262023A5064830552 @default.
- W4310262023 hasAuthorship W4310262023A5078886018 @default.
- W4310262023 hasConcept C105795698 @default.
- W4310262023 hasConcept C111919701 @default.
- W4310262023 hasConcept C116834253 @default.
- W4310262023 hasConcept C117045392 @default.
- W4310262023 hasConcept C124101348 @default.
- W4310262023 hasConcept C12713177 @default.
- W4310262023 hasConcept C127413603 @default.
- W4310262023 hasConcept C132525143 @default.
- W4310262023 hasConcept C134306372 @default.
- W4310262023 hasConcept C136764020 @default.
- W4310262023 hasConcept C137753397 @default.
- W4310262023 hasConcept C146978453 @default.
- W4310262023 hasConcept C154945302 @default.
- W4310262023 hasConcept C165700671 @default.
- W4310262023 hasConcept C186370098 @default.
- W4310262023 hasConcept C204323151 @default.
- W4310262023 hasConcept C33923547 @default.
- W4310262023 hasConcept C34947359 @default.
- W4310262023 hasConcept C41008148 @default.
- W4310262023 hasConcept C53811970 @default.
- W4310262023 hasConcept C59822182 @default.
- W4310262023 hasConcept C62611344 @default.
- W4310262023 hasConcept C66938386 @default.
- W4310262023 hasConcept C80444323 @default.
- W4310262023 hasConcept C86803240 @default.
- W4310262023 hasConcept C98045186 @default.
- W4310262023 hasConceptScore W4310262023C105795698 @default.
- W4310262023 hasConceptScore W4310262023C111919701 @default.
- W4310262023 hasConceptScore W4310262023C116834253 @default.
- W4310262023 hasConceptScore W4310262023C117045392 @default.
- W4310262023 hasConceptScore W4310262023C124101348 @default.
- W4310262023 hasConceptScore W4310262023C12713177 @default.
- W4310262023 hasConceptScore W4310262023C127413603 @default.
- W4310262023 hasConceptScore W4310262023C132525143 @default.
- W4310262023 hasConceptScore W4310262023C134306372 @default.
- W4310262023 hasConceptScore W4310262023C136764020 @default.
- W4310262023 hasConceptScore W4310262023C137753397 @default.
- W4310262023 hasConceptScore W4310262023C146978453 @default.
- W4310262023 hasConceptScore W4310262023C154945302 @default.
- W4310262023 hasConceptScore W4310262023C165700671 @default.