Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310263910> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4310263910 endingPage "346" @default.
- W4310263910 startingPage "335" @default.
- W4310263910 abstract "Pretrained Transformer based models finetuned on domain specific corpora have changed the landscape of NLP. Generally, if one has multiple tasks on a given dataset, one may finetune different models or use task specific adapters. In this work, we show that a multi-task model can beat or achieve the performance of multiple BERT-based models finetuned on various tasks and various task specific adapter augmented BERT-based models. We validate our method on our internal radiologist’s report dataset on cervical spine. We hypothesize that the tasks are semantically close and related and thus multitask learners are powerful classifiers. Our work opens the scope of using our method to radiologist’s reports on various body parts." @default.
- W4310263910 created "2022-11-30" @default.
- W4310263910 creator A5000208156 @default.
- W4310263910 creator A5004825095 @default.
- W4310263910 creator A5010113629 @default.
- W4310263910 creator A5018250567 @default.
- W4310263910 creator A5034361417 @default.
- W4310263910 creator A5073689827 @default.
- W4310263910 creator A5074300820 @default.
- W4310263910 creator A5081170720 @default.
- W4310263910 creator A5082149535 @default.
- W4310263910 creator A5090138468 @default.
- W4310263910 date "2022-11-29" @default.
- W4310263910 modified "2023-09-26" @default.
- W4310263910 title "Efficient Extraction of Pathologies from C-Spine Radiology Reports Using Multi-task Learning" @default.
- W4310263910 cites W1594039573 @default.
- W4310263910 cites W2592170186 @default.
- W4310263910 cites W2963716420 @default.
- W4310263910 cites W2979826702 @default.
- W4310263910 cites W3018939126 @default.
- W4310263910 cites W3028836324 @default.
- W4310263910 cites W3034225195 @default.
- W4310263910 cites W3037063616 @default.
- W4310263910 cites W3099143320 @default.
- W4310263910 cites W3099793224 @default.
- W4310263910 cites W3100625157 @default.
- W4310263910 cites W3153675281 @default.
- W4310263910 doi "https://doi.org/10.1007/978-3-031-14771-5_24" @default.
- W4310263910 hasPublicationYear "2022" @default.
- W4310263910 type Work @default.
- W4310263910 citedByCount "0" @default.
- W4310263910 crossrefType "book-chapter" @default.
- W4310263910 hasAuthorship W4310263910A5000208156 @default.
- W4310263910 hasAuthorship W4310263910A5004825095 @default.
- W4310263910 hasAuthorship W4310263910A5010113629 @default.
- W4310263910 hasAuthorship W4310263910A5018250567 @default.
- W4310263910 hasAuthorship W4310263910A5034361417 @default.
- W4310263910 hasAuthorship W4310263910A5073689827 @default.
- W4310263910 hasAuthorship W4310263910A5074300820 @default.
- W4310263910 hasAuthorship W4310263910A5081170720 @default.
- W4310263910 hasAuthorship W4310263910A5082149535 @default.
- W4310263910 hasAuthorship W4310263910A5090138468 @default.
- W4310263910 hasBestOaLocation W43102639102 @default.
- W4310263910 hasConcept C119857082 @default.
- W4310263910 hasConcept C121332964 @default.
- W4310263910 hasConcept C154945302 @default.
- W4310263910 hasConcept C162324750 @default.
- W4310263910 hasConcept C165801399 @default.
- W4310263910 hasConcept C187736073 @default.
- W4310263910 hasConcept C204321447 @default.
- W4310263910 hasConcept C2780451532 @default.
- W4310263910 hasConcept C28006648 @default.
- W4310263910 hasConcept C41008148 @default.
- W4310263910 hasConcept C62520636 @default.
- W4310263910 hasConcept C66322947 @default.
- W4310263910 hasConceptScore W4310263910C119857082 @default.
- W4310263910 hasConceptScore W4310263910C121332964 @default.
- W4310263910 hasConceptScore W4310263910C154945302 @default.
- W4310263910 hasConceptScore W4310263910C162324750 @default.
- W4310263910 hasConceptScore W4310263910C165801399 @default.
- W4310263910 hasConceptScore W4310263910C187736073 @default.
- W4310263910 hasConceptScore W4310263910C204321447 @default.
- W4310263910 hasConceptScore W4310263910C2780451532 @default.
- W4310263910 hasConceptScore W4310263910C28006648 @default.
- W4310263910 hasConceptScore W4310263910C41008148 @default.
- W4310263910 hasConceptScore W4310263910C62520636 @default.
- W4310263910 hasConceptScore W4310263910C66322947 @default.
- W4310263910 hasLocation W43102639101 @default.
- W4310263910 hasLocation W43102639102 @default.
- W4310263910 hasOpenAccess W4310263910 @default.
- W4310263910 hasPrimaryLocation W43102639101 @default.
- W4310263910 hasRelatedWork W2081647779 @default.
- W4310263910 hasRelatedWork W2784094750 @default.
- W4310263910 hasRelatedWork W2961085424 @default.
- W4310263910 hasRelatedWork W3107474891 @default.
- W4310263910 hasRelatedWork W3185852197 @default.
- W4310263910 hasRelatedWork W3193517282 @default.
- W4310263910 hasRelatedWork W3200361725 @default.
- W4310263910 hasRelatedWork W4213073923 @default.
- W4310263910 hasRelatedWork W4319309271 @default.
- W4310263910 hasRelatedWork W4366320140 @default.
- W4310263910 isParatext "false" @default.
- W4310263910 isRetracted "false" @default.
- W4310263910 workType "book-chapter" @default.