Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310266306> ?p ?o ?g. }
- W4310266306 abstract "Employing a large dataset (at most, the order of n = 106), this study attempts enhance the literature on the comparison between regression and machine learning-based rent price prediction models by adding new empirical evidence and considering the spatial dependence of the observations. The regression-based approach incorporates the nearest neighbor Gaussian processes (NNGP) model, enabling the application of kriging to large datasets. In contrast, the machine learning-based approach utilizes typical models: extreme gradient boosting (XGBoost), random forest (RF), and deep neural network (DNN). The out-of-sample prediction accuracy of these models was compared using Japanese apartment rent data, with a varying order of sample sizes (i.e., n = 104, 105, 106). The results showed that, as the sample size increased, XGBoost and RF outperformed NNGP with higher out-of-sample prediction accuracy. XGBoost achieved the highest prediction accuracy for all sample sizes and error measures in both logarithmic and real scales and for all price bands if the distribution of rents is similar in training and test data. A comparison of several methods to account for the spatial dependence in RF showed that simply adding spatial coordinates to the explanatory variables may be sufficient." @default.
- W4310266306 created "2022-11-30" @default.
- W4310266306 creator A5020895882 @default.
- W4310266306 creator A5022824333 @default.
- W4310266306 creator A5039934688 @default.
- W4310266306 date "2022-11-28" @default.
- W4310266306 modified "2023-10-15" @default.
- W4310266306 title "Spatial Prediction of Apartment Rent using Regression-Based and Machine Learning-Based Approaches with a Large Dataset" @default.
- W4310266306 cites W1504778066 @default.
- W4310266306 cites W1520812622 @default.
- W4310266306 cites W1589097074 @default.
- W4310266306 cites W1678356000 @default.
- W4310266306 cites W1898904249 @default.
- W4310266306 cites W1974495185 @default.
- W4310266306 cites W1991680770 @default.
- W4310266306 cites W2024046085 @default.
- W4310266306 cites W2024654404 @default.
- W4310266306 cites W2025249742 @default.
- W4310266306 cites W2028226037 @default.
- W4310266306 cites W2030597423 @default.
- W4310266306 cites W2037841907 @default.
- W4310266306 cites W2041766585 @default.
- W4310266306 cites W2044863747 @default.
- W4310266306 cites W2078214086 @default.
- W4310266306 cites W2085210969 @default.
- W4310266306 cites W2160061095 @default.
- W4310266306 cites W2322775088 @default.
- W4310266306 cites W2496675188 @default.
- W4310266306 cites W2604504584 @default.
- W4310266306 cites W2751758508 @default.
- W4310266306 cites W2772552993 @default.
- W4310266306 cites W2786555297 @default.
- W4310266306 cites W2793997912 @default.
- W4310266306 cites W2795443545 @default.
- W4310266306 cites W2799211855 @default.
- W4310266306 cites W2801461565 @default.
- W4310266306 cites W2802169453 @default.
- W4310266306 cites W2911964244 @default.
- W4310266306 cites W2913543033 @default.
- W4310266306 cites W2919115771 @default.
- W4310266306 cites W2930389570 @default.
- W4310266306 cites W2963022999 @default.
- W4310266306 cites W2964121744 @default.
- W4310266306 cites W2971574616 @default.
- W4310266306 cites W2999615587 @default.
- W4310266306 cites W3004792015 @default.
- W4310266306 cites W3005470619 @default.
- W4310266306 cites W3013314195 @default.
- W4310266306 cites W3015083507 @default.
- W4310266306 cites W3034152715 @default.
- W4310266306 cites W3046985715 @default.
- W4310266306 cites W3085784695 @default.
- W4310266306 cites W3094334168 @default.
- W4310266306 cites W3102027041 @default.
- W4310266306 cites W3102476541 @default.
- W4310266306 cites W3104986551 @default.
- W4310266306 cites W3112995261 @default.
- W4310266306 cites W3119224280 @default.
- W4310266306 cites W3123320408 @default.
- W4310266306 cites W3123930234 @default.
- W4310266306 cites W3124863041 @default.
- W4310266306 cites W3134319253 @default.
- W4310266306 cites W3169855463 @default.
- W4310266306 cites W3182395383 @default.
- W4310266306 cites W4212883601 @default.
- W4310266306 cites W4286457122 @default.
- W4310266306 cites W4287368407 @default.
- W4310266306 cites W3157711836 @default.
- W4310266306 doi "https://doi.org/10.1007/s11146-022-09929-6" @default.
- W4310266306 hasPublicationYear "2022" @default.
- W4310266306 type Work @default.
- W4310266306 citedByCount "2" @default.
- W4310266306 countsByYear W43102663062023 @default.
- W4310266306 crossrefType "journal-article" @default.
- W4310266306 hasAuthorship W4310266306A5020895882 @default.
- W4310266306 hasAuthorship W4310266306A5022824333 @default.
- W4310266306 hasAuthorship W4310266306A5039934688 @default.
- W4310266306 hasBestOaLocation W43102663062 @default.
- W4310266306 hasConcept C105795698 @default.
- W4310266306 hasConcept C119857082 @default.
- W4310266306 hasConcept C12267149 @default.
- W4310266306 hasConcept C129848803 @default.
- W4310266306 hasConcept C154945302 @default.
- W4310266306 hasConcept C169258074 @default.
- W4310266306 hasConcept C185592680 @default.
- W4310266306 hasConcept C198531522 @default.
- W4310266306 hasConcept C33923547 @default.
- W4310266306 hasConcept C41008148 @default.
- W4310266306 hasConcept C43617362 @default.
- W4310266306 hasConcept C50644808 @default.
- W4310266306 hasConcept C70153297 @default.
- W4310266306 hasConcept C81692654 @default.
- W4310266306 hasConcept C83546350 @default.
- W4310266306 hasConceptScore W4310266306C105795698 @default.
- W4310266306 hasConceptScore W4310266306C119857082 @default.
- W4310266306 hasConceptScore W4310266306C12267149 @default.
- W4310266306 hasConceptScore W4310266306C129848803 @default.
- W4310266306 hasConceptScore W4310266306C154945302 @default.
- W4310266306 hasConceptScore W4310266306C169258074 @default.
- W4310266306 hasConceptScore W4310266306C185592680 @default.