Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310266421> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4310266421 abstract "A biological system is a complex network of heterogeneous molecular entities and their interactions contributing to various biological characteristics of the system. However, current biological networks are noisy, sparse, and incomplete, limiting our ability to create a holistic view of the biological system and understand the biological phenomena. Experimental identification of such interactions is both time-consuming and expensive. With the recent advancements in high-throughput data generation and significant improvement in computational power, various computational methods have been developed to predict novel interactions in the noisy network. Recently, deep learning methods such as graph neural networks have shown their effectiveness in modeling graph-structured data and achieved good performance in biomedical interaction prediction. However, graph neural networks-based methods require human expertise and experimentation to design the appropriate complexity of the model and significantly impact the performance of the model. Furthermore, deep graph neural networks face overfitting problems and tend to be poorly calibrated with high confidence on incorrect predictions. To address these challenges, we propose Bayesian model selection for graph convolutional networks to jointly infer the most plausible number of graph convolution layers (depth) warranted by data and perform dropout regularization simultaneously. Experiments on four interaction datasets show that our proposed method achieves accurate and calibrated predictions. Our proposed method enables the graph convolutional networks to dynamically adapt their depths to accommodate an increasing number of interactions." @default.
- W4310266421 created "2022-11-30" @default.
- W4310266421 creator A5006650929 @default.
- W4310266421 creator A5015630121 @default.
- W4310266421 creator A5035006377 @default.
- W4310266421 creator A5081675173 @default.
- W4310266421 date "2022-11-22" @default.
- W4310266421 modified "2023-10-10" @default.
- W4310266421 title "Predicting Biomedical Interactions with Probabilistic Model Selection for Graph Neural Networks" @default.
- W4310266421 doi "https://doi.org/10.48550/arxiv.2211.13231" @default.
- W4310266421 hasPublicationYear "2022" @default.
- W4310266421 type Work @default.
- W4310266421 citedByCount "0" @default.
- W4310266421 crossrefType "posted-content" @default.
- W4310266421 hasAuthorship W4310266421A5006650929 @default.
- W4310266421 hasAuthorship W4310266421A5015630121 @default.
- W4310266421 hasAuthorship W4310266421A5035006377 @default.
- W4310266421 hasAuthorship W4310266421A5081675173 @default.
- W4310266421 hasBestOaLocation W43102664211 @default.
- W4310266421 hasConcept C119857082 @default.
- W4310266421 hasConcept C132525143 @default.
- W4310266421 hasConcept C154945302 @default.
- W4310266421 hasConcept C201797286 @default.
- W4310266421 hasConcept C22019652 @default.
- W4310266421 hasConcept C28225019 @default.
- W4310266421 hasConcept C41008148 @default.
- W4310266421 hasConcept C50644808 @default.
- W4310266421 hasConcept C54355233 @default.
- W4310266421 hasConcept C70721500 @default.
- W4310266421 hasConcept C80444323 @default.
- W4310266421 hasConcept C86803240 @default.
- W4310266421 hasConcept C93959086 @default.
- W4310266421 hasConceptScore W4310266421C119857082 @default.
- W4310266421 hasConceptScore W4310266421C132525143 @default.
- W4310266421 hasConceptScore W4310266421C154945302 @default.
- W4310266421 hasConceptScore W4310266421C201797286 @default.
- W4310266421 hasConceptScore W4310266421C22019652 @default.
- W4310266421 hasConceptScore W4310266421C28225019 @default.
- W4310266421 hasConceptScore W4310266421C41008148 @default.
- W4310266421 hasConceptScore W4310266421C50644808 @default.
- W4310266421 hasConceptScore W4310266421C54355233 @default.
- W4310266421 hasConceptScore W4310266421C70721500 @default.
- W4310266421 hasConceptScore W4310266421C80444323 @default.
- W4310266421 hasConceptScore W4310266421C86803240 @default.
- W4310266421 hasConceptScore W4310266421C93959086 @default.
- W4310266421 hasLocation W43102664211 @default.
- W4310266421 hasLocation W43102664212 @default.
- W4310266421 hasOpenAccess W4310266421 @default.
- W4310266421 hasPrimaryLocation W43102664211 @default.
- W4310266421 hasRelatedWork W15348386 @default.
- W4310266421 hasRelatedWork W2003394143 @default.
- W4310266421 hasRelatedWork W2101315668 @default.
- W4310266421 hasRelatedWork W2155492529 @default.
- W4310266421 hasRelatedWork W2314128295 @default.
- W4310266421 hasRelatedWork W2771206194 @default.
- W4310266421 hasRelatedWork W3201681661 @default.
- W4310266421 hasRelatedWork W4225271882 @default.
- W4310266421 hasRelatedWork W4252504573 @default.
- W4310266421 hasRelatedWork W4385510321 @default.
- W4310266421 isParatext "false" @default.
- W4310266421 isRetracted "false" @default.
- W4310266421 workType "article" @default.