Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310267071> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4310267071 endingPage "160490" @default.
- W4310267071 startingPage "160490" @default.
- W4310267071 abstract "The increasing number of vehicles is one main cause of atmospheric environment pollution problems. Timely and accurate long- and short-term (LST) prediction of the on-road vehicle exhaust emission could contribute to atmospheric pollution prevention, public health protection, and government decision-making for environmental management. Vehicle exhaust emission has strong non-stationary and nonlinear characteristics due to the inherent randomness and imbalance nature of meteorological factors and traffic flow. Therefore accurate LST vehicle exhaust emission prediction encounters many challenges, such as the LST temporal dependencies and complicated nonlinear correlation on various emission gases, including carbon monoxide (CO), hydrocarbon (HC), and nitric oxide (NO), and external influence factors. To resolve these challenging issues, we propose a novel hybrid deep learning framework, namely Dual Attention-based Fusion Network (DAFNet), to effectively predict LST multivariate vehicle exhaust emission with the temporal convolutional network, convolutional neural network, long short term memory (LSTM)-skip based on recurrent neural network, dual attention mechanism, and autoregressive decomposition model. The proposed DAFNet consists of three major parts: 1) a nonlinear component to effectively capture the dynamic LST temporal dependency of multivariate gas by the temporal convolutional network, convolutional neural network, and LSTM-skip. Moreover, the above two networks employ an attention mechanism to model the internal relevance of the LST temporal patterns and multivariate gas, respectively. 2) a linear component to tackle the scale-insensitive problem of the neural network model by an autoregressive decomposition model. 3) the external components are taken to compensate the impact of external factors on vehicle exhaust emission by the multilayer perceptron model. Finally, the proposed DAFNet is evaluated on two real-world vehicle emission datasets in Zibo and Hefei, China. Experimental results demonstrate that the proposed DAFNet is a powerful tool to provide highly accurate prediction for LST multivariate vehicle exhaust emission in the field of vehicle environmental management." @default.
- W4310267071 created "2022-11-30" @default.
- W4310267071 creator A5002774794 @default.
- W4310267071 creator A5062731814 @default.
- W4310267071 creator A5081012609 @default.
- W4310267071 creator A5083935587 @default.
- W4310267071 date "2023-02-01" @default.
- W4310267071 modified "2023-10-01" @default.
- W4310267071 title "A dual attention-based fusion network for long- and short-term multivariate vehicle exhaust emission prediction" @default.
- W4310267071 cites W1720804347 @default.
- W4310267071 cites W1977177161 @default.
- W4310267071 cites W1986071519 @default.
- W4310267071 cites W1999996900 @default.
- W4310267071 cites W2064675550 @default.
- W4310267071 cites W2065888990 @default.
- W4310267071 cites W2070986256 @default.
- W4310267071 cites W2071942861 @default.
- W4310267071 cites W2091085232 @default.
- W4310267071 cites W2800911105 @default.
- W4310267071 cites W2894548709 @default.
- W4310267071 cites W2943920234 @default.
- W4310267071 cites W2948490758 @default.
- W4310267071 cites W2970574092 @default.
- W4310267071 cites W2995046251 @default.
- W4310267071 cites W3012958665 @default.
- W4310267071 cites W3019433526 @default.
- W4310267071 cites W3081759654 @default.
- W4310267071 cites W3109365969 @default.
- W4310267071 cites W3119665391 @default.
- W4310267071 cites W3138579369 @default.
- W4310267071 cites W3146366485 @default.
- W4310267071 cites W3194222729 @default.
- W4310267071 cites W3197822946 @default.
- W4310267071 cites W3213539407 @default.
- W4310267071 cites W4200311967 @default.
- W4310267071 cites W4247645551 @default.
- W4310267071 doi "https://doi.org/10.1016/j.scitotenv.2022.160490" @default.
- W4310267071 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36442627" @default.
- W4310267071 hasPublicationYear "2023" @default.
- W4310267071 type Work @default.
- W4310267071 citedByCount "1" @default.
- W4310267071 countsByYear W43102670712023 @default.
- W4310267071 crossrefType "journal-article" @default.
- W4310267071 hasAuthorship W4310267071A5002774794 @default.
- W4310267071 hasAuthorship W4310267071A5062731814 @default.
- W4310267071 hasAuthorship W4310267071A5081012609 @default.
- W4310267071 hasAuthorship W4310267071A5083935587 @default.
- W4310267071 hasConcept C119857082 @default.
- W4310267071 hasConcept C149782125 @default.
- W4310267071 hasConcept C154945302 @default.
- W4310267071 hasConcept C159877910 @default.
- W4310267071 hasConcept C161584116 @default.
- W4310267071 hasConcept C33923547 @default.
- W4310267071 hasConcept C39432304 @default.
- W4310267071 hasConcept C41008148 @default.
- W4310267071 hasConcept C50644808 @default.
- W4310267071 hasConcept C81363708 @default.
- W4310267071 hasConceptScore W4310267071C119857082 @default.
- W4310267071 hasConceptScore W4310267071C149782125 @default.
- W4310267071 hasConceptScore W4310267071C154945302 @default.
- W4310267071 hasConceptScore W4310267071C159877910 @default.
- W4310267071 hasConceptScore W4310267071C161584116 @default.
- W4310267071 hasConceptScore W4310267071C33923547 @default.
- W4310267071 hasConceptScore W4310267071C39432304 @default.
- W4310267071 hasConceptScore W4310267071C41008148 @default.
- W4310267071 hasConceptScore W4310267071C50644808 @default.
- W4310267071 hasConceptScore W4310267071C81363708 @default.
- W4310267071 hasFunder F4320321001 @default.
- W4310267071 hasLocation W43102670711 @default.
- W4310267071 hasLocation W43102670712 @default.
- W4310267071 hasOpenAccess W4310267071 @default.
- W4310267071 hasPrimaryLocation W43102670711 @default.
- W4310267071 hasRelatedWork W2026488516 @default.
- W4310267071 hasRelatedWork W2166661714 @default.
- W4310267071 hasRelatedWork W2735477435 @default.
- W4310267071 hasRelatedWork W2748454020 @default.
- W4310267071 hasRelatedWork W2899084033 @default.
- W4310267071 hasRelatedWork W3016958897 @default.
- W4310267071 hasRelatedWork W3122327838 @default.
- W4310267071 hasRelatedWork W3181746755 @default.
- W4310267071 hasRelatedWork W4283379348 @default.
- W4310267071 hasRelatedWork W4312417841 @default.
- W4310267071 hasVolume "860" @default.
- W4310267071 isParatext "false" @default.
- W4310267071 isRetracted "false" @default.
- W4310267071 workType "article" @default.