Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310269110> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4310269110 abstract "Criminal investigations oftentimes need the identification of license plates of escape vehicles. The vehicles may be recorded by low-quality cameras in the wild. Their license plates may be unreadable for police officers. Recent efforts aim to use machine learning to forensically decipher license plates from such low-quality images. These methods operate near the information-theoretic limit of recognition and hence show quite high error rates. Unfortunately, it is unclear when such prediction errors occur, which makes it difficult to use these methods in practice. In this work, we propose a Bayesian Neural Network to inherently incorporate a reliability measure into the classifier. We additionally propose to integrate multiple estimations with an entropy weight to further improve the reliability. Our experiments show that this uncertainty metric dramatically reduces the number of false predictions while preserving most of the true predictions." @default.
- W4310269110 created "2022-11-30" @default.
- W4310269110 creator A5001561457 @default.
- W4310269110 creator A5034495569 @default.
- W4310269110 creator A5042665477 @default.
- W4310269110 creator A5049250339 @default.
- W4310269110 creator A5073442830 @default.
- W4310269110 date "2022-11-29" @default.
- W4310269110 modified "2023-09-27" @default.
- W4310269110 title "Reliability Scoring for the Recognition of Degraded License Plates" @default.
- W4310269110 cites W2115523395 @default.
- W4310269110 cites W2120820227 @default.
- W4310269110 cites W2136999174 @default.
- W4310269110 cites W2888888898 @default.
- W4310269110 cites W2965563166 @default.
- W4310269110 cites W2976728773 @default.
- W4310269110 cites W3089377254 @default.
- W4310269110 cites W3109173194 @default.
- W4310269110 cites W3132423306 @default.
- W4310269110 cites W3135322301 @default.
- W4310269110 cites W3211152955 @default.
- W4310269110 cites W4241644338 @default.
- W4310269110 doi "https://doi.org/10.1109/avss56176.2022.9959390" @default.
- W4310269110 hasPublicationYear "2022" @default.
- W4310269110 type Work @default.
- W4310269110 citedByCount "0" @default.
- W4310269110 crossrefType "proceedings-article" @default.
- W4310269110 hasAuthorship W4310269110A5001561457 @default.
- W4310269110 hasAuthorship W4310269110A5034495569 @default.
- W4310269110 hasAuthorship W4310269110A5042665477 @default.
- W4310269110 hasAuthorship W4310269110A5049250339 @default.
- W4310269110 hasAuthorship W4310269110A5073442830 @default.
- W4310269110 hasConcept C106301342 @default.
- W4310269110 hasConcept C107673813 @default.
- W4310269110 hasConcept C111919701 @default.
- W4310269110 hasConcept C119857082 @default.
- W4310269110 hasConcept C121332964 @default.
- W4310269110 hasConcept C124101348 @default.
- W4310269110 hasConcept C127413603 @default.
- W4310269110 hasConcept C153180895 @default.
- W4310269110 hasConcept C154945302 @default.
- W4310269110 hasConcept C163258240 @default.
- W4310269110 hasConcept C164614171 @default.
- W4310269110 hasConcept C176217482 @default.
- W4310269110 hasConcept C21547014 @default.
- W4310269110 hasConcept C2780560020 @default.
- W4310269110 hasConcept C41008148 @default.
- W4310269110 hasConcept C43214815 @default.
- W4310269110 hasConcept C50644808 @default.
- W4310269110 hasConcept C54355233 @default.
- W4310269110 hasConcept C62520636 @default.
- W4310269110 hasConcept C86803240 @default.
- W4310269110 hasConcept C95623464 @default.
- W4310269110 hasConceptScore W4310269110C106301342 @default.
- W4310269110 hasConceptScore W4310269110C107673813 @default.
- W4310269110 hasConceptScore W4310269110C111919701 @default.
- W4310269110 hasConceptScore W4310269110C119857082 @default.
- W4310269110 hasConceptScore W4310269110C121332964 @default.
- W4310269110 hasConceptScore W4310269110C124101348 @default.
- W4310269110 hasConceptScore W4310269110C127413603 @default.
- W4310269110 hasConceptScore W4310269110C153180895 @default.
- W4310269110 hasConceptScore W4310269110C154945302 @default.
- W4310269110 hasConceptScore W4310269110C163258240 @default.
- W4310269110 hasConceptScore W4310269110C164614171 @default.
- W4310269110 hasConceptScore W4310269110C176217482 @default.
- W4310269110 hasConceptScore W4310269110C21547014 @default.
- W4310269110 hasConceptScore W4310269110C2780560020 @default.
- W4310269110 hasConceptScore W4310269110C41008148 @default.
- W4310269110 hasConceptScore W4310269110C43214815 @default.
- W4310269110 hasConceptScore W4310269110C50644808 @default.
- W4310269110 hasConceptScore W4310269110C54355233 @default.
- W4310269110 hasConceptScore W4310269110C62520636 @default.
- W4310269110 hasConceptScore W4310269110C86803240 @default.
- W4310269110 hasConceptScore W4310269110C95623464 @default.
- W4310269110 hasFunder F4320311687 @default.
- W4310269110 hasLocation W43102691101 @default.
- W4310269110 hasOpenAccess W4310269110 @default.
- W4310269110 hasPrimaryLocation W43102691101 @default.
- W4310269110 hasRelatedWork W2001652754 @default.
- W4310269110 hasRelatedWork W2379065761 @default.
- W4310269110 hasRelatedWork W2549006548 @default.
- W4310269110 hasRelatedWork W2807311372 @default.
- W4310269110 hasRelatedWork W2961085424 @default.
- W4310269110 hasRelatedWork W2972035100 @default.
- W4310269110 hasRelatedWork W3043252291 @default.
- W4310269110 hasRelatedWork W4214932115 @default.
- W4310269110 hasRelatedWork W1629725936 @default.
- W4310269110 hasRelatedWork W3158004940 @default.
- W4310269110 isParatext "false" @default.
- W4310269110 isRetracted "false" @default.
- W4310269110 workType "article" @default.