Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310279356> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4310279356 abstract "U.S. Nuclear Regulatory Committee (NRC) and U.S. Department of Energy (DOE) initiated a future-focused research project to assess the regulatory viability of machine learning (ML) and artificial intelligence (AI)-driven Digital Twins (DTs) for nuclear applications. Advanced accident tolerant fuel (ATF) is one of the priority focus areas of the DOE/ NRC. DTs have the potential to transform the nuclear energy sector in the coming years by incorporating risk-informed decision-making into the Accelerated Fuel Qualification (AFQ) process for ATF. A DT framework can offer game-changing yet practical and informed solutions to the complex problem of qualifying advanced ATFs. However, novel ATF technology suffers from a couple of challenges, such as (i) Data unavailability; (ii) Lack of data, missing data; and (iii) Model uncertainty. These challenges must be resolved to gain the trust in DT framework development. In addition, DT-enabling technologies consist of three major areas: (i) modeling and simulation (M&S), covering uncertainty quantification (UQ), sensitivity analysis (SA), data analytics through ML/AI, physics-based models, and data-informed modeling, (ii) Advanced sensors/instrumentation, and (iii) Data management. UQ and SA are important segments of DT-enabling technologies to ensure trustworthiness, which need to be implemented to meet the DT requirement. Considering the regulatory standpoint of the modeling and simulation (M&S) aspect of DT, UQ and SA are paramount to the success of DT framework in terms of multi-criteria and risk-informed decision-making. In this study, the adaptability of polynomial chaos expansion (PCE) based UQ/SA in a non-intrusive method in BISON was investigated to ensure M&S aspects of the AFQ for ATF. This study introduces the ML-based UQ and SA methods while exhibiting actual applications to the finite element-based nuclear fuel performance code." @default.
- W4310279356 created "2022-11-30" @default.
- W4310279356 creator A5012088444 @default.
- W4310279356 creator A5017776301 @default.
- W4310279356 creator A5024730229 @default.
- W4310279356 creator A5030664714 @default.
- W4310279356 creator A5045486730 @default.
- W4310279356 creator A5055191773 @default.
- W4310279356 creator A5063457131 @default.
- W4310279356 date "2022-11-24" @default.
- W4310279356 modified "2023-09-24" @default.
- W4310279356 title "Non-Intrusive Uncertainty Quantification for U3Si2 and UO2 Fuels with SiC/SiC Cladding using BISON for Digital Twin-Enabling Technology" @default.
- W4310279356 doi "https://doi.org/10.48550/arxiv.2211.13687" @default.
- W4310279356 hasPublicationYear "2022" @default.
- W4310279356 type Work @default.
- W4310279356 citedByCount "0" @default.
- W4310279356 crossrefType "posted-content" @default.
- W4310279356 hasAuthorship W4310279356A5012088444 @default.
- W4310279356 hasAuthorship W4310279356A5017776301 @default.
- W4310279356 hasAuthorship W4310279356A5024730229 @default.
- W4310279356 hasAuthorship W4310279356A5030664714 @default.
- W4310279356 hasAuthorship W4310279356A5045486730 @default.
- W4310279356 hasAuthorship W4310279356A5055191773 @default.
- W4310279356 hasAuthorship W4310279356A5063457131 @default.
- W4310279356 hasBestOaLocation W43102793561 @default.
- W4310279356 hasConcept C119857082 @default.
- W4310279356 hasConcept C127413603 @default.
- W4310279356 hasConcept C177606310 @default.
- W4310279356 hasConcept C18903297 @default.
- W4310279356 hasConcept C200601418 @default.
- W4310279356 hasConcept C2522767166 @default.
- W4310279356 hasConcept C2780505938 @default.
- W4310279356 hasConcept C32230216 @default.
- W4310279356 hasConcept C41008148 @default.
- W4310279356 hasConcept C86803240 @default.
- W4310279356 hasConceptScore W4310279356C119857082 @default.
- W4310279356 hasConceptScore W4310279356C127413603 @default.
- W4310279356 hasConceptScore W4310279356C177606310 @default.
- W4310279356 hasConceptScore W4310279356C18903297 @default.
- W4310279356 hasConceptScore W4310279356C200601418 @default.
- W4310279356 hasConceptScore W4310279356C2522767166 @default.
- W4310279356 hasConceptScore W4310279356C2780505938 @default.
- W4310279356 hasConceptScore W4310279356C32230216 @default.
- W4310279356 hasConceptScore W4310279356C41008148 @default.
- W4310279356 hasConceptScore W4310279356C86803240 @default.
- W4310279356 hasLocation W43102793561 @default.
- W4310279356 hasLocation W43102793562 @default.
- W4310279356 hasOpenAccess W4310279356 @default.
- W4310279356 hasPrimaryLocation W43102793561 @default.
- W4310279356 hasRelatedWork W1841747458 @default.
- W4310279356 hasRelatedWork W1977599843 @default.
- W4310279356 hasRelatedWork W1994062215 @default.
- W4310279356 hasRelatedWork W2133180113 @default.
- W4310279356 hasRelatedWork W2350459918 @default.
- W4310279356 hasRelatedWork W2474678956 @default.
- W4310279356 hasRelatedWork W2790940427 @default.
- W4310279356 hasRelatedWork W2936237511 @default.
- W4310279356 hasRelatedWork W3017931041 @default.
- W4310279356 hasRelatedWork W4240254567 @default.
- W4310279356 isParatext "false" @default.
- W4310279356 isRetracted "false" @default.
- W4310279356 workType "article" @default.