Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310295893> ?p ?o ?g. }
- W4310295893 abstract "Abstract Background Dental age estimation plays an important role in identifying an unknown person. In forensic science, estimating age with high accuracy depends on the experience of the practitioner. Previous studies proposed classification of tooth development of the mandibular third molar by following Demirjian’s method, which is useful for dental age estimation. Although stage of tooth growth is very helpful in assessing age estimation, it must be performed manually. The drawback of this procedure is its need for skilled observers to carry out the tasks precisely and reproducibly because it is quite detailed. Therefore, this research aimed to apply computer-aid methods for reducing time and subjectivity in dental age estimation by using dental panoramic images based on Demirjian’s method. Dental panoramic images were collected from persons aged 15 to 23 years old. In accordance with Demirjian’s method, this study focused only on stages D to H of tooth development, which were discovered in the 15- to 23-year age range. The aggregate channel features detector was applied automatically to localize and crop only the lower left mandibular third molar in panoramic images. Then, the convolutional neural network model was applied to classify cropped images into D to H stages. Finally, the classified stages were used to estimate dental age. Results Experimental results showed that the proposed method in this study can localize the lower left mandibular third molar automatically with 99.5% accuracy, and training in the convolutional neural network model can achieve 83.25% classification accuracy using the transfer learning strategy with the Resnet50 network. Conclusion In this work, the aggregate channel features detector and convolutional neural network model were applied to localize a specific tooth in a panoramic image and identify the developmental stages automatically in order to estimate the age of the subjects. The proposed method can be applied in clinical practice as a tool that helps clinicians to reduce the time and subjectivity for dental age estimation." @default.
- W4310295893 created "2022-11-30" @default.
- W4310295893 creator A5017262203 @default.
- W4310295893 creator A5017927862 @default.
- W4310295893 creator A5063051674 @default.
- W4310295893 creator A5071228147 @default.
- W4310295893 creator A5081119097 @default.
- W4310295893 date "2022-11-26" @default.
- W4310295893 modified "2023-10-14" @default.
- W4310295893 title "Fully automated method for dental age estimation using the ACF detector and deep learning" @default.
- W4310295893 cites W1536680647 @default.
- W4310295893 cites W1968326505 @default.
- W4310295893 cites W1975234934 @default.
- W4310295893 cites W1975479203 @default.
- W4310295893 cites W2044545403 @default.
- W4310295893 cites W2048689870 @default.
- W4310295893 cites W2060992925 @default.
- W4310295893 cites W2084804188 @default.
- W4310295893 cites W2097117768 @default.
- W4310295893 cites W2102605133 @default.
- W4310295893 cites W2122965326 @default.
- W4310295893 cites W2125556102 @default.
- W4310295893 cites W2129799936 @default.
- W4310295893 cites W2162206900 @default.
- W4310295893 cites W2164777277 @default.
- W4310295893 cites W2165698076 @default.
- W4310295893 cites W2194775991 @default.
- W4310295893 cites W2321935917 @default.
- W4310295893 cites W2532606991 @default.
- W4310295893 cites W2536359444 @default.
- W4310295893 cites W2570343428 @default.
- W4310295893 cites W2900371303 @default.
- W4310295893 cites W2953106684 @default.
- W4310295893 cites W2962858109 @default.
- W4310295893 cites W2963037989 @default.
- W4310295893 cites W2964121744 @default.
- W4310295893 cites W2967474765 @default.
- W4310295893 cites W2972072626 @default.
- W4310295893 cites W3003562648 @default.
- W4310295893 cites W3009813469 @default.
- W4310295893 cites W3014441239 @default.
- W4310295893 cites W3038992530 @default.
- W4310295893 cites W3042886623 @default.
- W4310295893 cites W3116668143 @default.
- W4310295893 cites W3120919271 @default.
- W4310295893 cites W3130983831 @default.
- W4310295893 cites W3142038490 @default.
- W4310295893 cites W3153478335 @default.
- W4310295893 cites W3153636033 @default.
- W4310295893 cites W3173233751 @default.
- W4310295893 cites W3196351230 @default.
- W4310295893 cites W3199647575 @default.
- W4310295893 cites W3201430175 @default.
- W4310295893 cites W3206708164 @default.
- W4310295893 cites W3215545045 @default.
- W4310295893 cites W4205151685 @default.
- W4310295893 cites W4214764577 @default.
- W4310295893 cites W4283770308 @default.
- W4310295893 cites W4292956071 @default.
- W4310295893 cites W4293584584 @default.
- W4310295893 doi "https://doi.org/10.1186/s41935-022-00314-1" @default.
- W4310295893 hasPublicationYear "2022" @default.
- W4310295893 type Work @default.
- W4310295893 citedByCount "1" @default.
- W4310295893 countsByYear W43102958932023 @default.
- W4310295893 crossrefType "journal-article" @default.
- W4310295893 hasAuthorship W4310295893A5017262203 @default.
- W4310295893 hasAuthorship W4310295893A5017927862 @default.
- W4310295893 hasAuthorship W4310295893A5063051674 @default.
- W4310295893 hasAuthorship W4310295893A5071228147 @default.
- W4310295893 hasAuthorship W4310295893A5081119097 @default.
- W4310295893 hasBestOaLocation W43102958931 @default.
- W4310295893 hasConcept C127413603 @default.
- W4310295893 hasConcept C153180895 @default.
- W4310295893 hasConcept C154945302 @default.
- W4310295893 hasConcept C199343813 @default.
- W4310295893 hasConcept C201995342 @default.
- W4310295893 hasConcept C202271784 @default.
- W4310295893 hasConcept C29694066 @default.
- W4310295893 hasConcept C31972630 @default.
- W4310295893 hasConcept C41008148 @default.
- W4310295893 hasConcept C50644808 @default.
- W4310295893 hasConcept C71924100 @default.
- W4310295893 hasConcept C81363708 @default.
- W4310295893 hasConcept C96250715 @default.
- W4310295893 hasConceptScore W4310295893C127413603 @default.
- W4310295893 hasConceptScore W4310295893C153180895 @default.
- W4310295893 hasConceptScore W4310295893C154945302 @default.
- W4310295893 hasConceptScore W4310295893C199343813 @default.
- W4310295893 hasConceptScore W4310295893C201995342 @default.
- W4310295893 hasConceptScore W4310295893C202271784 @default.
- W4310295893 hasConceptScore W4310295893C29694066 @default.
- W4310295893 hasConceptScore W4310295893C31972630 @default.
- W4310295893 hasConceptScore W4310295893C41008148 @default.
- W4310295893 hasConceptScore W4310295893C50644808 @default.
- W4310295893 hasConceptScore W4310295893C71924100 @default.
- W4310295893 hasConceptScore W4310295893C81363708 @default.
- W4310295893 hasConceptScore W4310295893C96250715 @default.
- W4310295893 hasIssue "1" @default.
- W4310295893 hasLocation W43102958931 @default.