Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310295910> ?p ?o ?g. }
- W4310295910 endingPage "2160" @default.
- W4310295910 startingPage "2134" @default.
- W4310295910 abstract "Summary It has been observed that a good number of financial organizations often face a number of threats due to credit card fraud that affects consistently to the card holder as well as the organizations. This is one of the fastest‐growing frauds of its kind and the most emerging problems for the institutions to prevent. A number of researchers and analysts have shown interest to work on this area in order to identify such issues in an effective manner by applying various supervised as well as unsupervised learning approaches. In this assessment, three classification techniques such as support vector machine (SVM), k ‐nearest neighbor ( k ‐NN), and extreme learning machine (ELM) that come under supervised learning category are applied to the BankSim data to categorize the normal and fraudulent class transactions in credit card. These algorithms are incorporated with the graph features extracted from the dataset by using a database tool Neo4j . The nodes of the graph represent the transactional data samples and the edges create relationships among the nodes to find the patterns of data using connected data analysis. k‐fold cross validation approach in Gaussian mixture model (GMM) has been applied for classification of the credit card transaction data in a single distribution. Further, a combined graph‐based Gaussian mixture model (CGB‐GMM) has been proposed to effectively detect the fraudulent instances in credit card transactions with the application of graph algorithms such as degree centrality, LPA, page rank, and so forth. Each of the learning algorithms are implemented with and without the application of graph algorithms and their performances are assessed empirically for analysis." @default.
- W4310295910 created "2022-11-30" @default.
- W4310295910 creator A5016802130 @default.
- W4310295910 creator A5022669865 @default.
- W4310295910 creator A5075206346 @default.
- W4310295910 date "2022-11-26" @default.
- W4310295910 modified "2023-10-02" @default.
- W4310295910 title "Hybridizing graph‐based Gaussian mixture model with machine learning for classification of fraudulent transactions" @default.
- W4310295910 cites W1724737952 @default.
- W4310295910 cites W1963624219 @default.
- W4310295910 cites W1982165141 @default.
- W4310295910 cites W2026131661 @default.
- W4310295910 cites W2040895929 @default.
- W4310295910 cites W2045064676 @default.
- W4310295910 cites W2056944867 @default.
- W4310295910 cites W2074346829 @default.
- W4310295910 cites W2088252378 @default.
- W4310295910 cites W2090425484 @default.
- W4310295910 cites W2099579348 @default.
- W4310295910 cites W2110712520 @default.
- W4310295910 cites W2111072639 @default.
- W4310295910 cites W2132202037 @default.
- W4310295910 cites W2229948894 @default.
- W4310295910 cites W2476188390 @default.
- W4310295910 cites W2517937047 @default.
- W4310295910 cites W2548468541 @default.
- W4310295910 cites W2558890589 @default.
- W4310295910 cites W2621323946 @default.
- W4310295910 cites W2769458339 @default.
- W4310295910 cites W2795555658 @default.
- W4310295910 cites W2805166017 @default.
- W4310295910 cites W2806534322 @default.
- W4310295910 cites W2898963020 @default.
- W4310295910 cites W2913934873 @default.
- W4310295910 cites W2966244084 @default.
- W4310295910 cites W2985273290 @default.
- W4310295910 cites W2989258287 @default.
- W4310295910 cites W2998689367 @default.
- W4310295910 cites W3023783070 @default.
- W4310295910 cites W3025519219 @default.
- W4310295910 cites W3031913912 @default.
- W4310295910 cites W3034058898 @default.
- W4310295910 cites W3081680075 @default.
- W4310295910 cites W3124591658 @default.
- W4310295910 cites W3157532648 @default.
- W4310295910 cites W3161789553 @default.
- W4310295910 doi "https://doi.org/10.1111/coin.12561" @default.
- W4310295910 hasPublicationYear "2022" @default.
- W4310295910 type Work @default.
- W4310295910 citedByCount "0" @default.
- W4310295910 crossrefType "journal-article" @default.
- W4310295910 hasAuthorship W4310295910A5016802130 @default.
- W4310295910 hasAuthorship W4310295910A5022669865 @default.
- W4310295910 hasAuthorship W4310295910A5075206346 @default.
- W4310295910 hasConcept C119857082 @default.
- W4310295910 hasConcept C12267149 @default.
- W4310295910 hasConcept C124101348 @default.
- W4310295910 hasConcept C127722929 @default.
- W4310295910 hasConcept C132525143 @default.
- W4310295910 hasConcept C136764020 @default.
- W4310295910 hasConcept C145097563 @default.
- W4310295910 hasConcept C154945302 @default.
- W4310295910 hasConcept C2983355114 @default.
- W4310295910 hasConcept C41008148 @default.
- W4310295910 hasConcept C61224824 @default.
- W4310295910 hasConcept C75949130 @default.
- W4310295910 hasConcept C77088390 @default.
- W4310295910 hasConcept C80444323 @default.
- W4310295910 hasConceptScore W4310295910C119857082 @default.
- W4310295910 hasConceptScore W4310295910C12267149 @default.
- W4310295910 hasConceptScore W4310295910C124101348 @default.
- W4310295910 hasConceptScore W4310295910C127722929 @default.
- W4310295910 hasConceptScore W4310295910C132525143 @default.
- W4310295910 hasConceptScore W4310295910C136764020 @default.
- W4310295910 hasConceptScore W4310295910C145097563 @default.
- W4310295910 hasConceptScore W4310295910C154945302 @default.
- W4310295910 hasConceptScore W4310295910C2983355114 @default.
- W4310295910 hasConceptScore W4310295910C41008148 @default.
- W4310295910 hasConceptScore W4310295910C61224824 @default.
- W4310295910 hasConceptScore W4310295910C75949130 @default.
- W4310295910 hasConceptScore W4310295910C77088390 @default.
- W4310295910 hasConceptScore W4310295910C80444323 @default.
- W4310295910 hasIssue "6" @default.
- W4310295910 hasLocation W43102959101 @default.
- W4310295910 hasOpenAccess W4310295910 @default.
- W4310295910 hasPrimaryLocation W43102959101 @default.
- W4310295910 hasRelatedWork W1799051469 @default.
- W4310295910 hasRelatedWork W182249589 @default.
- W4310295910 hasRelatedWork W1996541855 @default.
- W4310295910 hasRelatedWork W2327153543 @default.
- W4310295910 hasRelatedWork W2611438591 @default.
- W4310295910 hasRelatedWork W3036124657 @default.
- W4310295910 hasRelatedWork W3195168932 @default.
- W4310295910 hasRelatedWork W4385452279 @default.
- W4310295910 hasRelatedWork W2405429603 @default.
- W4310295910 hasRelatedWork W2623522708 @default.
- W4310295910 hasVolume "38" @default.
- W4310295910 isParatext "false" @default.