Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310333337> ?p ?o ?g. }
- W4310333337 endingPage "e35750" @default.
- W4310333337 startingPage "e35750" @default.
- W4310333337 abstract "Several studies have explored the predictive performance of machine learning-based breast cancer risk prediction models and have shown controversial conclusions. Thus, the performance of the current machine learning-based breast cancer risk prediction models and their benefits and weakness need to be evaluated for the future development of feasible and efficient risk prediction models.The aim of this review was to assess the performance and the clinical feasibility of the currently available machine learning-based breast cancer risk prediction models.We searched for papers published until June 9, 2021, on machine learning-based breast cancer risk prediction models in PubMed, Embase, and Web of Science. Studies describing the development or validation models for predicting future breast cancer risk were included. The Prediction Model Risk of Bias Assessment Tool (PROBAST) was used to assess the risk of bias and the clinical applicability of the included studies. The pooled area under the curve (AUC) was calculated using the DerSimonian and Laird random-effects model.A total of 8 studies with 10 data sets were included. Neural network was the most common machine learning method for the development of breast cancer risk prediction models. The pooled AUC of the machine learning-based optimal risk prediction model reported in each study was 0.73 (95% CI 0.66-0.80; approximate 95% prediction interval 0.56-0.96), with a high level of heterogeneity between studies (Q=576.07, I2=98.44%; P<.001). The results of head-to-head comparison of the performance difference between the 2 types of models trained by the same data set showed that machine learning models had a slightly higher advantage than traditional risk factor-based models in predicting future breast cancer risk. The pooled AUC of the neural network-based risk prediction model was higher than that of the nonneural network-based optimal risk prediction model (0.71 vs 0.68, respectively). Subgroup analysis showed that the incorporation of imaging features in risk models resulted in a higher pooled AUC than the nonincorporation of imaging features in risk models (0.73 vs 0.61; Pheterogeneity=.001, respectively). The PROBAST analysis indicated that many machine learning models had high risk of bias and poorly reported calibration analysis.Our review shows that the current machine learning-based breast cancer risk prediction models have some technical pitfalls and that their clinical feasibility and reliability are unsatisfactory." @default.
- W4310333337 created "2022-12-08" @default.
- W4310333337 creator A5016655501 @default.
- W4310333337 creator A5025851882 @default.
- W4310333337 creator A5030083369 @default.
- W4310333337 creator A5035875939 @default.
- W4310333337 creator A5038933123 @default.
- W4310333337 creator A5051106975 @default.
- W4310333337 creator A5072044577 @default.
- W4310333337 creator A5076092660 @default.
- W4310333337 creator A5076849176 @default.
- W4310333337 creator A5086463632 @default.
- W4310333337 date "2022-12-29" @default.
- W4310333337 modified "2023-09-26" @default.
- W4310333337 title "An Assessment of the Predictive Performance of Current Machine Learning–Based Breast Cancer Risk Prediction Models: Systematic Review" @default.
- W4310333337 cites W1651586605 @default.
- W4310333337 cites W1964901833 @default.
- W4310333337 cites W1973914781 @default.
- W4310333337 cites W1981976602 @default.
- W4310333337 cites W1987915768 @default.
- W4310333337 cites W2013840898 @default.
- W4310333337 cites W2021066073 @default.
- W4310333337 cites W2033585778 @default.
- W4310333337 cites W2077663753 @default.
- W4310333337 cites W2107328434 @default.
- W4310333337 cites W2111061352 @default.
- W4310333337 cites W2111547563 @default.
- W4310333337 cites W2156098321 @default.
- W4310333337 cites W2157823046 @default.
- W4310333337 cites W2162307063 @default.
- W4310333337 cites W2162363055 @default.
- W4310333337 cites W2182350758 @default.
- W4310333337 cites W2217324596 @default.
- W4310333337 cites W2290344319 @default.
- W4310333337 cites W2343217573 @default.
- W4310333337 cites W2525984666 @default.
- W4310333337 cites W2570878489 @default.
- W4310333337 cites W2792148132 @default.
- W4310333337 cites W2796266003 @default.
- W4310333337 cites W2889646458 @default.
- W4310333337 cites W2907554860 @default.
- W4310333337 cites W2907638671 @default.
- W4310333337 cites W2909967666 @default.
- W4310333337 cites W2931383325 @default.
- W4310333337 cites W2946471051 @default.
- W4310333337 cites W2986544402 @default.
- W4310333337 cites W2991792334 @default.
- W4310333337 cites W2996116683 @default.
- W4310333337 cites W2998618511 @default.
- W4310333337 cites W3036325595 @default.
- W4310333337 cites W3124938033 @default.
- W4310333337 cites W3130185507 @default.
- W4310333337 cites W3186792330 @default.
- W4310333337 cites W3189472969 @default.
- W4310333337 cites W4226155098 @default.
- W4310333337 doi "https://doi.org/10.2196/35750" @default.
- W4310333337 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36426919" @default.
- W4310333337 hasPublicationYear "2022" @default.
- W4310333337 type Work @default.
- W4310333337 citedByCount "2" @default.
- W4310333337 countsByYear W43103333372023 @default.
- W4310333337 crossrefType "journal-article" @default.
- W4310333337 hasAuthorship W4310333337A5016655501 @default.
- W4310333337 hasAuthorship W4310333337A5025851882 @default.
- W4310333337 hasAuthorship W4310333337A5030083369 @default.
- W4310333337 hasAuthorship W4310333337A5035875939 @default.
- W4310333337 hasAuthorship W4310333337A5038933123 @default.
- W4310333337 hasAuthorship W4310333337A5051106975 @default.
- W4310333337 hasAuthorship W4310333337A5072044577 @default.
- W4310333337 hasAuthorship W4310333337A5076092660 @default.
- W4310333337 hasAuthorship W4310333337A5076849176 @default.
- W4310333337 hasAuthorship W4310333337A5086463632 @default.
- W4310333337 hasBestOaLocation W43103333371 @default.
- W4310333337 hasConcept C119857082 @default.
- W4310333337 hasConcept C121608353 @default.
- W4310333337 hasConcept C12174686 @default.
- W4310333337 hasConcept C126322002 @default.
- W4310333337 hasConcept C154945302 @default.
- W4310333337 hasConcept C38652104 @default.
- W4310333337 hasConcept C41008148 @default.
- W4310333337 hasConcept C45804977 @default.
- W4310333337 hasConcept C50644808 @default.
- W4310333337 hasConcept C530470458 @default.
- W4310333337 hasConcept C71924100 @default.
- W4310333337 hasConceptScore W4310333337C119857082 @default.
- W4310333337 hasConceptScore W4310333337C121608353 @default.
- W4310333337 hasConceptScore W4310333337C12174686 @default.
- W4310333337 hasConceptScore W4310333337C126322002 @default.
- W4310333337 hasConceptScore W4310333337C154945302 @default.
- W4310333337 hasConceptScore W4310333337C38652104 @default.
- W4310333337 hasConceptScore W4310333337C41008148 @default.
- W4310333337 hasConceptScore W4310333337C45804977 @default.
- W4310333337 hasConceptScore W4310333337C50644808 @default.
- W4310333337 hasConceptScore W4310333337C530470458 @default.
- W4310333337 hasConceptScore W4310333337C71924100 @default.
- W4310333337 hasIssue "12" @default.
- W4310333337 hasLocation W43103333371 @default.
- W4310333337 hasLocation W43103333372 @default.