Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310334168> ?p ?o ?g. }
- W4310334168 endingPage "205520762211320" @default.
- W4310334168 startingPage "205520762211320" @default.
- W4310334168 abstract "Background Technological innovations gained momentum and supported COVID-19 intelligence surveillance among high-risk populations globally. We examined technology surveillance using mobile thermometer detectors (MTDs), knowledge of App, and self-efficacy as a means of sensing body temperature as a measure of COVID-19 risk mitigation. In a cross-sectional survey, we explored COVID-19 risk mitigation, mobile temperature detectable by network syndromic surveillance mobility, detachable from clinicians, and laboratory diagnoses to elucidate the magnitude of community monitoring. Materials and Methods In a cross-sectional survey, we create in-depth comprehension of risk mitigation, mobile temperature Thermometer detector, and other variables for surveillance and monitoring among 850 university students and healthcare workers. An applied structural equation model was adopted for analysis with Amos v.24. We established that mobile usability knowledge of APP could effectively aid in COVID-19 intelligence risk mitigation. Moreover, both self-efficacy and mobile temperature positively strengthened data visualization for public health decision-making. Results The algorithms utilize a validated point-of-center test to ascertain the HealthCode scanning system for a positive or negative COVID-19 notification. The MTD is an alternative personal self-testing procedure used to verify temperature rates based on previous SARS-CoV-2 and future mobility digital health. Personal self-care of MTD mobility and knowledge of mHealth apps can specifically manage COVID-19 mitigation in high or low terrestrial areas. We found mobile usability, mobile self-efficacy, and app knowledge were statistically significant to COVID-19 mitigation. Additionally, interaction strengthened the positive relationship between self-efficacy and COVID-19. Data aggregation is entrusted with government database agencies, using natural language processing and machine learning mechanisms to validate and analyze. Conclusion The study shows that temperature thermometer detectors, mobile usability, and knowledge of App enhanced COVID-19 risk mitigation in a high or low-risk environment. The standardizing dataset is necessary to ensure privacy and security preservation of data ethics." @default.
- W4310334168 created "2022-12-08" @default.
- W4310334168 creator A5041965062 @default.
- W4310334168 creator A5050485733 @default.
- W4310334168 creator A5064624675 @default.
- W4310334168 creator A5076426489 @default.
- W4310334168 creator A5080278040 @default.
- W4310334168 creator A5090763801 @default.
- W4310334168 date "2022-01-01" @default.
- W4310334168 modified "2023-10-14" @default.
- W4310334168 title "COVID-19 smart surveillance: Examination of Knowledge of Apps and mobile thermometer detectors (MTDs) in a high-risk society" @default.
- W4310334168 cites W1634424612 @default.
- W4310334168 cites W2003931844 @default.
- W4310334168 cites W2069256380 @default.
- W4310334168 cites W2083439948 @default.
- W4310334168 cites W2105846236 @default.
- W4310334168 cites W2120571425 @default.
- W4310334168 cites W2134049139 @default.
- W4310334168 cites W2226349369 @default.
- W4310334168 cites W2566086561 @default.
- W4310334168 cites W2577473701 @default.
- W4310334168 cites W2594327685 @default.
- W4310334168 cites W2762752635 @default.
- W4310334168 cites W2765084379 @default.
- W4310334168 cites W2782390287 @default.
- W4310334168 cites W2790659171 @default.
- W4310334168 cites W2805893594 @default.
- W4310334168 cites W2809032519 @default.
- W4310334168 cites W2902204463 @default.
- W4310334168 cites W2903345698 @default.
- W4310334168 cites W2904425693 @default.
- W4310334168 cites W2914028135 @default.
- W4310334168 cites W2918157498 @default.
- W4310334168 cites W2942805235 @default.
- W4310334168 cites W2981907270 @default.
- W4310334168 cites W2995790605 @default.
- W4310334168 cites W30049764 @default.
- W4310334168 cites W3012849906 @default.
- W4310334168 cites W3017015186 @default.
- W4310334168 cites W3029329656 @default.
- W4310334168 cites W3038816632 @default.
- W4310334168 cites W3038927055 @default.
- W4310334168 cites W3043503235 @default.
- W4310334168 cites W3047747926 @default.
- W4310334168 cites W3049068313 @default.
- W4310334168 cites W3082359457 @default.
- W4310334168 cites W3097309983 @default.
- W4310334168 cites W3106844081 @default.
- W4310334168 cites W3111854664 @default.
- W4310334168 cites W3123722757 @default.
- W4310334168 cites W4292581645 @default.
- W4310334168 cites W4292808503 @default.
- W4310334168 cites W4293153310 @default.
- W4310334168 doi "https://doi.org/10.1177/20552076221132092" @default.
- W4310334168 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36420316" @default.
- W4310334168 hasPublicationYear "2022" @default.
- W4310334168 type Work @default.
- W4310334168 citedByCount "0" @default.
- W4310334168 crossrefType "journal-article" @default.
- W4310334168 hasAuthorship W4310334168A5041965062 @default.
- W4310334168 hasAuthorship W4310334168A5050485733 @default.
- W4310334168 hasAuthorship W4310334168A5064624675 @default.
- W4310334168 hasAuthorship W4310334168A5076426489 @default.
- W4310334168 hasAuthorship W4310334168A5080278040 @default.
- W4310334168 hasAuthorship W4310334168A5090763801 @default.
- W4310334168 hasBestOaLocation W43103341681 @default.
- W4310334168 hasConcept C107457646 @default.
- W4310334168 hasConcept C111919701 @default.
- W4310334168 hasConcept C121332964 @default.
- W4310334168 hasConcept C136764020 @default.
- W4310334168 hasConcept C142724271 @default.
- W4310334168 hasConcept C159110408 @default.
- W4310334168 hasConcept C170130773 @default.
- W4310334168 hasConcept C186967261 @default.
- W4310334168 hasConcept C27415008 @default.
- W4310334168 hasConcept C2777155165 @default.
- W4310334168 hasConcept C2779134260 @default.
- W4310334168 hasConcept C2779363104 @default.
- W4310334168 hasConcept C2988145974 @default.
- W4310334168 hasConcept C3008058167 @default.
- W4310334168 hasConcept C41008148 @default.
- W4310334168 hasConcept C524204448 @default.
- W4310334168 hasConcept C62520636 @default.
- W4310334168 hasConcept C71924100 @default.
- W4310334168 hasConceptScore W4310334168C107457646 @default.
- W4310334168 hasConceptScore W4310334168C111919701 @default.
- W4310334168 hasConceptScore W4310334168C121332964 @default.
- W4310334168 hasConceptScore W4310334168C136764020 @default.
- W4310334168 hasConceptScore W4310334168C142724271 @default.
- W4310334168 hasConceptScore W4310334168C159110408 @default.
- W4310334168 hasConceptScore W4310334168C170130773 @default.
- W4310334168 hasConceptScore W4310334168C186967261 @default.
- W4310334168 hasConceptScore W4310334168C27415008 @default.
- W4310334168 hasConceptScore W4310334168C2777155165 @default.
- W4310334168 hasConceptScore W4310334168C2779134260 @default.
- W4310334168 hasConceptScore W4310334168C2779363104 @default.
- W4310334168 hasConceptScore W4310334168C2988145974 @default.
- W4310334168 hasConceptScore W4310334168C3008058167 @default.