Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310334736> ?p ?o ?g. }
- W4310334736 endingPage "967" @default.
- W4310334736 startingPage "956" @default.
- W4310334736 abstract "Dysphagia occurs secondary to a variety of underlying etiologies and can contribute to increased risk of adverse events such as aspiration pneumonia and premature mortality. Dysphagia is primarily diagnosed and characterized by instrumental swallowing exams such as videofluoroscopic swallowing studies. videofluoroscopic swallowing studies involve the inspection of a series of radiographic images for signs of swallowing dysfunction. Though effective, videofluoroscopic swallowing studies are only available in certain clinical settings and are not always desirable or feasible for certain patients. Because of the limitations of current instrumental swallow exams, research studies have explored the use of acceleration signals collected from neck sensors and demonstrated their potential in providing comparable radiation-free diagnostic value as videofluoroscopic swallowing studies. In this study, we used a hybrid deep convolutional recurrent neural network that can perform multi-level feature extraction (localized and across time) to annotate swallow segments automatically via multi-channel swallowing acceleration signals. In total, we used signals and videofluoroscopic swallowing study images of 3144 swallows from 248 patients with suspected dysphagia. Compared to other deep network variants, our network was superior at detecting swallow segments with an average area under the receiver operating characteristic curve value of 0.82 (95% confidence interval: 0.807-0.841), and was in agreement with up to 90% of the gold standard-labeled segments." @default.
- W4310334736 created "2022-12-08" @default.
- W4310334736 creator A5025472603 @default.
- W4310334736 creator A5031279847 @default.
- W4310334736 creator A5054072222 @default.
- W4310334736 creator A5090149160 @default.
- W4310334736 date "2023-02-01" @default.
- W4310334736 modified "2023-10-04" @default.
- W4310334736 title "Autonomous Swallow Segment Extraction Using Deep Learning in Neck-Sensor Vibratory Signals From Patients With Dysphagia" @default.
- W4310334736 cites W1542462226 @default.
- W4310334736 cites W1576292069 @default.
- W4310334736 cites W1806891645 @default.
- W4310334736 cites W1970891614 @default.
- W4310334736 cites W1972752811 @default.
- W4310334736 cites W1981638466 @default.
- W4310334736 cites W1982993926 @default.
- W4310334736 cites W2013998242 @default.
- W4310334736 cites W2014484741 @default.
- W4310334736 cites W2028006743 @default.
- W4310334736 cites W2052000467 @default.
- W4310334736 cites W2065784508 @default.
- W4310334736 cites W2084147767 @default.
- W4310334736 cites W2085420842 @default.
- W4310334736 cites W2090193317 @default.
- W4310334736 cites W2093823678 @default.
- W4310334736 cites W2097117768 @default.
- W4310334736 cites W2100994230 @default.
- W4310334736 cites W2107797622 @default.
- W4310334736 cites W2123054080 @default.
- W4310334736 cites W2141403362 @default.
- W4310334736 cites W2143014063 @default.
- W4310334736 cites W2153859070 @default.
- W4310334736 cites W2153915745 @default.
- W4310334736 cites W2159232358 @default.
- W4310334736 cites W2160447150 @default.
- W4310334736 cites W2167113242 @default.
- W4310334736 cites W2171138447 @default.
- W4310334736 cites W2194775991 @default.
- W4310334736 cites W2290546137 @default.
- W4310334736 cites W2771336279 @default.
- W4310334736 cites W2791514042 @default.
- W4310334736 cites W2803832415 @default.
- W4310334736 cites W2887336235 @default.
- W4310334736 cites W2905637940 @default.
- W4310334736 cites W2907284364 @default.
- W4310334736 cites W2957299183 @default.
- W4310334736 cites W2973166642 @default.
- W4310334736 cites W3024461332 @default.
- W4310334736 cites W3030237993 @default.
- W4310334736 cites W3033575927 @default.
- W4310334736 cites W3083374281 @default.
- W4310334736 cites W3087576084 @default.
- W4310334736 cites W3091161122 @default.
- W4310334736 cites W3107050463 @default.
- W4310334736 cites W3111108096 @default.
- W4310334736 cites W3156067807 @default.
- W4310334736 cites W3161202628 @default.
- W4310334736 cites W3195759619 @default.
- W4310334736 cites W4214576940 @default.
- W4310334736 cites W4226344160 @default.
- W4310334736 cites W4234180827 @default.
- W4310334736 cites W4250746658 @default.
- W4310334736 cites W4280594639 @default.
- W4310334736 cites W4293812141 @default.
- W4310334736 cites W4302931491 @default.
- W4310334736 doi "https://doi.org/10.1109/jbhi.2022.3224323" @default.
- W4310334736 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36417738" @default.
- W4310334736 hasPublicationYear "2023" @default.
- W4310334736 type Work @default.
- W4310334736 citedByCount "2" @default.
- W4310334736 countsByYear W43103347362023 @default.
- W4310334736 crossrefType "journal-article" @default.
- W4310334736 hasAuthorship W4310334736A5025472603 @default.
- W4310334736 hasAuthorship W4310334736A5031279847 @default.
- W4310334736 hasAuthorship W4310334736A5054072222 @default.
- W4310334736 hasAuthorship W4310334736A5090149160 @default.
- W4310334736 hasConcept C112497637 @default.
- W4310334736 hasConcept C126322002 @default.
- W4310334736 hasConcept C126838900 @default.
- W4310334736 hasConcept C154945302 @default.
- W4310334736 hasConcept C2777914695 @default.
- W4310334736 hasConcept C2780596822 @default.
- W4310334736 hasConcept C40993552 @default.
- W4310334736 hasConcept C41008148 @default.
- W4310334736 hasConcept C71924100 @default.
- W4310334736 hasConcept C81363708 @default.
- W4310334736 hasConcept C99508421 @default.
- W4310334736 hasConceptScore W4310334736C112497637 @default.
- W4310334736 hasConceptScore W4310334736C126322002 @default.
- W4310334736 hasConceptScore W4310334736C126838900 @default.
- W4310334736 hasConceptScore W4310334736C154945302 @default.
- W4310334736 hasConceptScore W4310334736C2777914695 @default.
- W4310334736 hasConceptScore W4310334736C2780596822 @default.
- W4310334736 hasConceptScore W4310334736C40993552 @default.
- W4310334736 hasConceptScore W4310334736C41008148 @default.
- W4310334736 hasConceptScore W4310334736C71924100 @default.
- W4310334736 hasConceptScore W4310334736C81363708 @default.
- W4310334736 hasConceptScore W4310334736C99508421 @default.