Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310335723> ?p ?o ?g. }
- W4310335723 endingPage "e41520" @default.
- W4310335723 startingPage "e41520" @default.
- W4310335723 abstract "Older adults have worse outcomes following hospitalization with COVID-19, but within this group there is substantial variation. Although frailty and comorbidity are key determinants of mortality, it is less clear which specific manifestations of frailty and comorbidity are associated with the worst outcomes.We aimed to identify the key comorbidities and domains of frailty that were associated with in-hospital mortality in older patients with COVID-19 using models developed for machine learning algorithms.This was a retrospective study that used the Hospital Episode Statistics administrative data set from March 1, 2020, to February 28, 2021, for hospitalized patients in England aged 65 years or older. The data set was split into separate training (70%), test (15%), and validation (15%) data sets during model development. Global frailty was assessed using the Hospital Frailty Risk Score (HFRS) and specific domains of frailty were identified using the Global Frailty Scale (GFS). Comorbidity was assessed using the Charlson Comorbidity Index (CCI). Additional features employed in the random forest algorithms included age, sex, deprivation, ethnicity, discharge month and year, geographical region, hospital trust, disease severity, and International Statistical Classification of Disease, 10th Edition codes recorded during the admission. Features were selected, preprocessed, and input into a series of random forest classification algorithms developed to identify factors strongly associated with in-hospital mortality. Two models were developed; the first model included the demographic, hospital-related, and disease-related items described above, as well as individual GFS domains and CCI items. The second model was similar to the first but replaced the GFS domains and CCI items with the HFRS as a global measure of frailty. Model performance was assessed using the area under the receiver operating characteristic (AUROC) curve and measures of model accuracy.In total, 215,831 patients were included. The model using the individual GFS domains and CCI items had an AUROC curve for in-hospital mortality of 90% and a predictive accuracy of 83%. The model using the HFRS had similar performance (AUROC curve 90%, predictive accuracy 82%). The most important frailty items in the GFS were dementia/delirium, falls/fractures, and pressure ulcers/weight loss. The most important comorbidity items in the CCI were cancer, heart failure, and renal disease.The physical manifestations of frailty and comorbidity, particularly a history of cognitive impairment and falls, may be useful in identification of patients who need additional support during hospitalization with COVID-19." @default.
- W4310335723 created "2022-12-08" @default.
- W4310335723 creator A5003164614 @default.
- W4310335723 creator A5007766862 @default.
- W4310335723 creator A5023564691 @default.
- W4310335723 creator A5033736641 @default.
- W4310335723 creator A5040264989 @default.
- W4310335723 creator A5045247249 @default.
- W4310335723 creator A5059888794 @default.
- W4310335723 creator A5068439561 @default.
- W4310335723 creator A5076920894 @default.
- W4310335723 creator A5081933734 @default.
- W4310335723 creator A5082128958 @default.
- W4310335723 creator A5086171078 @default.
- W4310335723 date "2022-12-12" @default.
- W4310335723 modified "2023-10-13" @default.
- W4310335723 title "Frailty, Comorbidity, and Associations With In-Hospital Mortality in Older COVID-19 Patients: Exploratory Study of Administrative Data" @default.
- W4310335723 cites W1983190331 @default.
- W4310335723 cites W2000445173 @default.
- W4310335723 cites W2291720716 @default.
- W4310335723 cites W2606574756 @default.
- W4310335723 cites W2802067770 @default.
- W4310335723 cites W2898834355 @default.
- W4310335723 cites W2910962823 @default.
- W4310335723 cites W2952537480 @default.
- W4310335723 cites W3002568562 @default.
- W4310335723 cites W3006261855 @default.
- W4310335723 cites W3012925204 @default.
- W4310335723 cites W3018087367 @default.
- W4310335723 cites W3022984628 @default.
- W4310335723 cites W3023787531 @default.
- W4310335723 cites W3024193040 @default.
- W4310335723 cites W3026025636 @default.
- W4310335723 cites W3026764413 @default.
- W4310335723 cites W3038265715 @default.
- W4310335723 cites W3038777030 @default.
- W4310335723 cites W3041985244 @default.
- W4310335723 cites W3044595037 @default.
- W4310335723 cites W3045824473 @default.
- W4310335723 cites W3047144258 @default.
- W4310335723 cites W3048497432 @default.
- W4310335723 cites W3081323642 @default.
- W4310335723 cites W3081740179 @default.
- W4310335723 cites W3083040221 @default.
- W4310335723 cites W3092398080 @default.
- W4310335723 cites W3093207086 @default.
- W4310335723 cites W3094542430 @default.
- W4310335723 cites W3106625504 @default.
- W4310335723 cites W3114761368 @default.
- W4310335723 cites W3122622529 @default.
- W4310335723 cites W3123364032 @default.
- W4310335723 cites W3126379194 @default.
- W4310335723 cites W3126928558 @default.
- W4310335723 cites W3127736952 @default.
- W4310335723 cites W3131695882 @default.
- W4310335723 cites W3134061302 @default.
- W4310335723 cites W3135438978 @default.
- W4310335723 cites W3137149211 @default.
- W4310335723 cites W3137448809 @default.
- W4310335723 cites W3147784348 @default.
- W4310335723 cites W3158866896 @default.
- W4310335723 cites W3162199380 @default.
- W4310335723 cites W3164719666 @default.
- W4310335723 cites W3164995039 @default.
- W4310335723 cites W3181575494 @default.
- W4310335723 cites W3188444363 @default.
- W4310335723 cites W3189622595 @default.
- W4310335723 cites W4210703369 @default.
- W4310335723 cites W4226017875 @default.
- W4310335723 cites W4283389321 @default.
- W4310335723 cites W4288766512 @default.
- W4310335723 cites W4293860235 @default.
- W4310335723 cites W4295313945 @default.
- W4310335723 doi "https://doi.org/10.2196/41520" @default.
- W4310335723 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36423306" @default.
- W4310335723 hasPublicationYear "2022" @default.
- W4310335723 type Work @default.
- W4310335723 citedByCount "4" @default.
- W4310335723 countsByYear W43103357232023 @default.
- W4310335723 crossrefType "journal-article" @default.
- W4310335723 hasAuthorship W4310335723A5003164614 @default.
- W4310335723 hasAuthorship W4310335723A5007766862 @default.
- W4310335723 hasAuthorship W4310335723A5023564691 @default.
- W4310335723 hasAuthorship W4310335723A5033736641 @default.
- W4310335723 hasAuthorship W4310335723A5040264989 @default.
- W4310335723 hasAuthorship W4310335723A5045247249 @default.
- W4310335723 hasAuthorship W4310335723A5059888794 @default.
- W4310335723 hasAuthorship W4310335723A5068439561 @default.
- W4310335723 hasAuthorship W4310335723A5076920894 @default.
- W4310335723 hasAuthorship W4310335723A5081933734 @default.
- W4310335723 hasAuthorship W4310335723A5082128958 @default.
- W4310335723 hasAuthorship W4310335723A5086171078 @default.
- W4310335723 hasBestOaLocation W43103357231 @default.
- W4310335723 hasConcept C126322002 @default.
- W4310335723 hasConcept C144024400 @default.
- W4310335723 hasConcept C149923435 @default.
- W4310335723 hasConcept C2779134260 @default.
- W4310335723 hasConcept C2779159551 @default.