Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310336733> ?p ?o ?g. }
- W4310336733 endingPage "125" @default.
- W4310336733 startingPage "106" @default.
- W4310336733 abstract "Endosymbiosis with Gammaproteobacteria is fundamental for the success of bathymodioline mussels in deep-sea chemosynthesis-based ecosystems. However, the recent discovery of Campylobacteria on the gill surfaces of these mussels suggests that these host-bacterial relationships may be more complex than previously thought. Using the cold-seep mussel ( Gigantidas haimaensis) as a model, we explored this host-bacterial system by assembling the host transcriptome and genomes of its epibiotic Campylobacteria and endosymbiotic Gammaproteobacteria and quantifying their gene and protein expression levels. We found that the epibiont applies a sulfur oxidizing (SOX) multienzyme complex with the acquisition of soxB from Gammaproteobacteria for energy production and switched from a reductive tricarboxylic acid (rTCA) cycle to a Calvin-Benson-Bassham (CBB) cycle for carbon assimilation. The host provides metabolic intermediates, inorganic carbon, and thiosulfate to satisfy the materials and energy requirements of the epibiont, but whether the epibiont benefits the host is unclear. The endosymbiont adopts methane oxidation and the ribulose monophosphate pathway (RuMP) for energy production, providing the major source of energy for itself and the host. The host obtains most of its nutrients, such as lysine, glutamine, valine, isoleucine, leucine, histidine, and folate, from the endosymbiont. In addition, host pattern recognition receptors, including toll-like receptors, peptidoglycan recognition proteins, and C-type lectins, may participate in bacterial infection, maintenance, and population regulation. Overall, this study provides insights into the complex host-bacterial relationships that have enabled mussels and bacteria to thrive in deep-sea chemosynthetic ecosystems.深海偏顶蛤亚科的贻贝栖息于以化能自养为基础的深海环境,并通过鳃细胞内共生γ变形菌作为其适应极端深海环境的关键策略。近期研究发现某些深海偏顶蛤的鳃细胞表面存在一类弯曲杆菌,暗示该共生系统中宿主与细菌的互作关系可能比先前的认知更为复杂。该文以海马巨偏顶蛤( Gigantidas haimaensis)作为研究模型,应用宿主转录组、细菌基因组和与相关基因的表达水平及蛋白质丰度,对该宿主-细菌共生系统进行了深入探究。研究结果发现海马巨偏顶蛤的体表附生菌(Campylobacteria)通过SOX多酶复合体获取能量,其中一个关键酶基因soxB来源于硫氧化γ变形菌,并且固碳方式由还原性三羧酸循环(rTCA)转变为卡尔文循环(CBB)。该体表附生菌是否对宿主有益尚且未知,但宿主却可为其提供代谢所需的中间产物、无机碳,与硫代硫酸盐以支持其生长所需的物质与能量。另外,海马巨偏顶蛤的内共生菌(Gammaproteobacteria)通过甲烷氧化与戊糖磷酸途径获取能量,为宿主及其自身提供生长所需的物质能量。其中,宿主从其内共生菌获取主要的营养物质,包括赖氨酸、谷氨酰胺、缬氨酸、异亮氨酸、亮氨酸、组氨酸,及叶酸。此外,宿主的模式识别受体,如类铎受体、肽聚糖识别蛋白、和C类凝集素,可能参与了两种细胞的感染与维持,及其种群控制等过程。综上,该研究不仅为深海偏顶蛤宿主-细菌共生体系的相互作用提供了新的见解,而且阐明了海马巨偏顶蛤繁荣于化能自养深海生态系统的生存策略。." @default.
- W4310336733 created "2022-12-08" @default.
- W4310336733 creator A5016517296 @default.
- W4310336733 creator A5028946657 @default.
- W4310336733 creator A5056340272 @default.
- W4310336733 creator A5057843626 @default.
- W4310336733 creator A5064352990 @default.
- W4310336733 creator A5071773009 @default.
- W4310336733 creator A5073790021 @default.
- W4310336733 creator A5074999404 @default.
- W4310336733 creator A5087914366 @default.
- W4310336733 date "2023-01-01" @default.
- W4310336733 modified "2023-09-30" @default.
- W4310336733 title "Interactions among deep-sea mussels and their epibiotic and endosymbiotic chemoautotrophic bacteria: Insights from multi-omics analysis" @default.
- W4310336733 cites W1262867747 @default.
- W4310336733 cites W1813176225 @default.
- W4310336733 cites W1970382894 @default.
- W4310336733 cites W1975634430 @default.
- W4310336733 cites W1984375007 @default.
- W4310336733 cites W1990004173 @default.
- W4310336733 cites W1994826406 @default.
- W4310336733 cites W2007153665 @default.
- W4310336733 cites W2024144061 @default.
- W4310336733 cites W2031659186 @default.
- W4310336733 cites W2032822024 @default.
- W4310336733 cites W2043937926 @default.
- W4310336733 cites W2045204781 @default.
- W4310336733 cites W2048052835 @default.
- W4310336733 cites W2048937439 @default.
- W4310336733 cites W2060757154 @default.
- W4310336733 cites W2091952621 @default.
- W4310336733 cites W2096093282 @default.
- W4310336733 cites W2096789441 @default.
- W4310336733 cites W2107255126 @default.
- W4310336733 cites W2112364185 @default.
- W4310336733 cites W2116276518 @default.
- W4310336733 cites W2120902911 @default.
- W4310336733 cites W2126419817 @default.
- W4310336733 cites W2127622574 @default.
- W4310336733 cites W2128635872 @default.
- W4310336733 cites W2131271579 @default.
- W4310336733 cites W2133579817 @default.
- W4310336733 cites W2137440065 @default.
- W4310336733 cites W2139538396 @default.
- W4310336733 cites W2139754665 @default.
- W4310336733 cites W2142678478 @default.
- W4310336733 cites W2155628349 @default.
- W4310336733 cites W2160378127 @default.
- W4310336733 cites W2161298281 @default.
- W4310336733 cites W2166265186 @default.
- W4310336733 cites W2170747616 @default.
- W4310336733 cites W2178043251 @default.
- W4310336733 cites W2179438025 @default.
- W4310336733 cites W2305350422 @default.
- W4310336733 cites W2461711360 @default.
- W4310336733 cites W2491416790 @default.
- W4310336733 cites W2544360569 @default.
- W4310336733 cites W2548512960 @default.
- W4310336733 cites W2592811885 @default.
- W4310336733 cites W2604169503 @default.
- W4310336733 cites W2608285012 @default.
- W4310336733 cites W2609006221 @default.
- W4310336733 cites W2614081736 @default.
- W4310336733 cites W2742834237 @default.
- W4310336733 cites W2753859002 @default.
- W4310336733 cites W2801957482 @default.
- W4310336733 cites W2900489033 @default.
- W4310336733 cites W2900629010 @default.
- W4310336733 cites W2903366279 @default.
- W4310336733 cites W2942498833 @default.
- W4310336733 cites W2945412400 @default.
- W4310336733 cites W2950464960 @default.
- W4310336733 cites W2968557966 @default.
- W4310336733 cites W2975914829 @default.
- W4310336733 cites W2980315205 @default.
- W4310336733 cites W2986925300 @default.
- W4310336733 cites W2988396470 @default.
- W4310336733 cites W2988561218 @default.
- W4310336733 cites W2991239467 @default.
- W4310336733 cites W2991491873 @default.
- W4310336733 cites W3036319615 @default.
- W4310336733 cites W3038907173 @default.
- W4310336733 cites W3087406471 @default.
- W4310336733 cites W3088552736 @default.
- W4310336733 cites W311319496 @default.
- W4310336733 cites W3120402006 @default.
- W4310336733 cites W3158482709 @default.
- W4310336733 cites W3181369663 @default.
- W4310336733 cites W3198563322 @default.
- W4310336733 cites W3217094790 @default.
- W4310336733 cites W4231639621 @default.
- W4310336733 cites W857665402 @default.
- W4310336733 doi "https://doi.org/10.24272/j.issn.2095-8137.2022.279" @default.
- W4310336733 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36419378" @default.
- W4310336733 hasPublicationYear "2023" @default.
- W4310336733 type Work @default.
- W4310336733 citedByCount "3" @default.
- W4310336733 countsByYear W43103367332023 @default.