Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310343100> ?p ?o ?g. }
- W4310343100 abstract "Abstract Understanding the length of stay of severe patients who require general anesthesia is key to enhancing health outcomes. Here, we aim to discover how machine learning can support resource allocation management and decision-making resulting from the length of stay prediction. A retrospective cohort study was conducted from January 2018 to October 2020. A total cohort of 240,000 patients’ medical records was collected. The data were collected exclusively for preoperative variables to accurately analyze the predictive factors impacting the postoperative length of stay. The main outcome of this study is an analysis of the length of stay (in days) after surgery until discharge. The prediction was performed with ridge regression, random forest, XGBoost, and multi-layer perceptron neural network models. The XGBoost resulted in the best performance with an average error within 3 days. Moreover, we explain each feature’s contribution over the XGBoost model and further display distinct predictors affecting the overall prediction outcome at the patient level. The risk factors that most importantly contributed to the stay after surgery were as follows: a direct bilirubin laboratory test, department change, calcium chloride medication, gender, and diagnosis with the removal of other organs. Our results suggest that healthcare providers take into account the risk factors such as the laboratory blood test, distributing patients, and the medication prescribed prior to the surgery. We successfully predicted the length of stay after surgery and provide explainable models with supporting analyses. In summary, we demonstrate the interpretation with the XGBoost model presenting insights on preoperative features and defining higher risk predictors to the length of stay outcome. Our development in explainable models supports the current in-depth knowledge for the future length of stay prediction on electronic medical records that aids the decision-making and facilitation of the operation department." @default.
- W4310343100 created "2022-12-09" @default.
- W4310343100 creator A5003967179 @default.
- W4310343100 creator A5010258839 @default.
- W4310343100 creator A5012996842 @default.
- W4310343100 creator A5022326974 @default.
- W4310343100 creator A5028489416 @default.
- W4310343100 creator A5031403492 @default.
- W4310343100 creator A5043802942 @default.
- W4310343100 creator A5043997609 @default.
- W4310343100 creator A5046171235 @default.
- W4310343100 creator A5046870688 @default.
- W4310343100 creator A5048848268 @default.
- W4310343100 creator A5081516800 @default.
- W4310343100 date "2022-11-29" @default.
- W4310343100 modified "2023-10-18" @default.
- W4310343100 title "Explainable predictions of a machine learning model to forecast the postoperative length of stay for severe patients" @default.
- W4310343100 cites W1793774538 @default.
- W4310343100 cites W1991871310 @default.
- W4310343100 cites W1992562595 @default.
- W4310343100 cites W2002159318 @default.
- W4310343100 cites W2012029301 @default.
- W4310343100 cites W2039274996 @default.
- W4310343100 cites W2048452264 @default.
- W4310343100 cites W2053332839 @default.
- W4310343100 cites W2084279889 @default.
- W4310343100 cites W2099264750 @default.
- W4310343100 cites W2108365102 @default.
- W4310343100 cites W2135195117 @default.
- W4310343100 cites W2142181701 @default.
- W4310343100 cites W2157125041 @default.
- W4310343100 cites W2167101736 @default.
- W4310343100 cites W2204794060 @default.
- W4310343100 cites W2216946510 @default.
- W4310343100 cites W2548076404 @default.
- W4310343100 cites W2587977043 @default.
- W4310343100 cites W2782347492 @default.
- W4310343100 cites W2796794885 @default.
- W4310343100 cites W2892741787 @default.
- W4310343100 cites W2910844001 @default.
- W4310343100 cites W2919115771 @default.
- W4310343100 cites W2996199134 @default.
- W4310343100 cites W2999615587 @default.
- W4310343100 cites W3004612364 @default.
- W4310343100 cites W3110967931 @default.
- W4310343100 cites W3129694079 @default.
- W4310343100 cites W3199290835 @default.
- W4310343100 cites W3214641480 @default.
- W4310343100 cites W4200244351 @default.
- W4310343100 cites W4220841832 @default.
- W4310343100 cites W4283011022 @default.
- W4310343100 cites W4288096441 @default.
- W4310343100 cites W4307810447 @default.
- W4310343100 doi "https://doi.org/10.21203/rs.3.rs-2298843/v1" @default.
- W4310343100 hasPublicationYear "2022" @default.
- W4310343100 type Work @default.
- W4310343100 citedByCount "0" @default.
- W4310343100 crossrefType "posted-content" @default.
- W4310343100 hasAuthorship W4310343100A5003967179 @default.
- W4310343100 hasAuthorship W4310343100A5010258839 @default.
- W4310343100 hasAuthorship W4310343100A5012996842 @default.
- W4310343100 hasAuthorship W4310343100A5022326974 @default.
- W4310343100 hasAuthorship W4310343100A5028489416 @default.
- W4310343100 hasAuthorship W4310343100A5031403492 @default.
- W4310343100 hasAuthorship W4310343100A5043802942 @default.
- W4310343100 hasAuthorship W4310343100A5043997609 @default.
- W4310343100 hasAuthorship W4310343100A5046171235 @default.
- W4310343100 hasAuthorship W4310343100A5046870688 @default.
- W4310343100 hasAuthorship W4310343100A5048848268 @default.
- W4310343100 hasAuthorship W4310343100A5081516800 @default.
- W4310343100 hasBestOaLocation W43103431001 @default.
- W4310343100 hasConcept C119857082 @default.
- W4310343100 hasConcept C126322002 @default.
- W4310343100 hasConcept C141071460 @default.
- W4310343100 hasConcept C144237770 @default.
- W4310343100 hasConcept C148220186 @default.
- W4310343100 hasConcept C154945302 @default.
- W4310343100 hasConcept C160735492 @default.
- W4310343100 hasConcept C162324750 @default.
- W4310343100 hasConcept C167135981 @default.
- W4310343100 hasConcept C169258074 @default.
- W4310343100 hasConcept C194828623 @default.
- W4310343100 hasConcept C195910791 @default.
- W4310343100 hasConcept C33923547 @default.
- W4310343100 hasConcept C41008148 @default.
- W4310343100 hasConcept C50522688 @default.
- W4310343100 hasConcept C71924100 @default.
- W4310343100 hasConcept C72563966 @default.
- W4310343100 hasConceptScore W4310343100C119857082 @default.
- W4310343100 hasConceptScore W4310343100C126322002 @default.
- W4310343100 hasConceptScore W4310343100C141071460 @default.
- W4310343100 hasConceptScore W4310343100C144237770 @default.
- W4310343100 hasConceptScore W4310343100C148220186 @default.
- W4310343100 hasConceptScore W4310343100C154945302 @default.
- W4310343100 hasConceptScore W4310343100C160735492 @default.
- W4310343100 hasConceptScore W4310343100C162324750 @default.
- W4310343100 hasConceptScore W4310343100C167135981 @default.
- W4310343100 hasConceptScore W4310343100C169258074 @default.
- W4310343100 hasConceptScore W4310343100C194828623 @default.
- W4310343100 hasConceptScore W4310343100C195910791 @default.