Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310346532> ?p ?o ?g. }
- W4310346532 endingPage "108064" @default.
- W4310346532 startingPage "108064" @default.
- W4310346532 abstract "In the upcoming irrigation management in agricultural production, accurate mapping of crop water consumption with a high spatial and temporal resolution at a farm scale is needed. In this study, we developed models for crop coefficients (Kc) estimation using unmanned aerial vehicle (UAV) remote sensing and machine learning (ML) techniques for irrigated maize in a semi-arid region in Northwest China. Kc values were calculated using a procedure given in FAO56 manual using field measurements. Multispectral vegetation indices (VIs), vegetation fraction (VF), thermal-based VIs, and texture information (TI) were derived from UAV-based multispectral, RGB, and thermal infrared imagery, respectively. These remotely sensed variables and their combinations were used to develop prediction models using six ML algorithms (linear regression-LR, polynomial regression-PR, exponential regression-ER, random forest regression-RFR, support vector regression-SVR, and deep neural network-DNN). Among these models, the RFR with the highest accuracy (R2 = 0.69, RMSE = 0.1019) was recommended to estimate maize Kc. The multispectral and thermal-based VIs and texture of the near-infrared band had greater contributions than RGB-based VF and TI in the Kc-RFR model under different irrigation treatments. Furthermore, the maize Kc-RFR prediction model had high accuracy in estimating cumulative evapotranspiration (R2 = 0.89, RMSE = 15.0 mm/stage) during different growth stages and daily soil water content (R2 = 0.85, RMSE = 0.0089 m3/m3) in the root zone. These results show that the integration of UAV remote sensing and ML provides a promising tool to help farmers make decisions using timely mapped crop water consumption, especially under water shortages or drought conditions." @default.
- W4310346532 created "2022-12-09" @default.
- W4310346532 creator A5025633795 @default.
- W4310346532 creator A5027781871 @default.
- W4310346532 creator A5029667848 @default.
- W4310346532 creator A5063896198 @default.
- W4310346532 creator A5071773009 @default.
- W4310346532 creator A5084421942 @default.
- W4310346532 date "2023-02-01" @default.
- W4310346532 modified "2023-10-16" @default.
- W4310346532 title "Prediction of maize crop coefficient from UAV multisensor remote sensing using machine learning methods" @default.
- W4310346532 cites W1514392458 @default.
- W4310346532 cites W1712696517 @default.
- W4310346532 cites W1747966239 @default.
- W4310346532 cites W1778466821 @default.
- W4310346532 cites W1963578825 @default.
- W4310346532 cites W1964217023 @default.
- W4310346532 cites W1972127185 @default.
- W4310346532 cites W1978773808 @default.
- W4310346532 cites W1980065012 @default.
- W4310346532 cites W1994192883 @default.
- W4310346532 cites W2004415796 @default.
- W4310346532 cites W2022637976 @default.
- W4310346532 cites W2030043359 @default.
- W4310346532 cites W2035196255 @default.
- W4310346532 cites W2042999648 @default.
- W4310346532 cites W2044465660 @default.
- W4310346532 cites W2052700773 @default.
- W4310346532 cites W2061377722 @default.
- W4310346532 cites W2064417027 @default.
- W4310346532 cites W2065195561 @default.
- W4310346532 cites W2067777246 @default.
- W4310346532 cites W2073842304 @default.
- W4310346532 cites W2078996926 @default.
- W4310346532 cites W2087122307 @default.
- W4310346532 cites W2108516806 @default.
- W4310346532 cites W2111947859 @default.
- W4310346532 cites W2129299622 @default.
- W4310346532 cites W2134829952 @default.
- W4310346532 cites W2139244996 @default.
- W4310346532 cites W2147555557 @default.
- W4310346532 cites W2171747502 @default.
- W4310346532 cites W2180981235 @default.
- W4310346532 cites W2364902821 @default.
- W4310346532 cites W2501412768 @default.
- W4310346532 cites W2513213365 @default.
- W4310346532 cites W2515382892 @default.
- W4310346532 cites W2599412217 @default.
- W4310346532 cites W2621014197 @default.
- W4310346532 cites W2743182111 @default.
- W4310346532 cites W2767657507 @default.
- W4310346532 cites W2793799625 @default.
- W4310346532 cites W2799456846 @default.
- W4310346532 cites W2803657503 @default.
- W4310346532 cites W2884634948 @default.
- W4310346532 cites W2886807638 @default.
- W4310346532 cites W2889246260 @default.
- W4310346532 cites W2946630864 @default.
- W4310346532 cites W2947241366 @default.
- W4310346532 cites W2951458873 @default.
- W4310346532 cites W2953075763 @default.
- W4310346532 cites W2964683531 @default.
- W4310346532 cites W2972297511 @default.
- W4310346532 cites W2979824366 @default.
- W4310346532 cites W2989720013 @default.
- W4310346532 cites W2996041315 @default.
- W4310346532 cites W2999491882 @default.
- W4310346532 cites W3007765580 @default.
- W4310346532 cites W3032322152 @default.
- W4310346532 cites W3038833675 @default.
- W4310346532 cites W3042884492 @default.
- W4310346532 cites W3045144182 @default.
- W4310346532 cites W3081981046 @default.
- W4310346532 cites W3092453021 @default.
- W4310346532 cites W3127745513 @default.
- W4310346532 cites W3133462027 @default.
- W4310346532 cites W3135851475 @default.
- W4310346532 cites W3137905899 @default.
- W4310346532 cites W3158152910 @default.
- W4310346532 doi "https://doi.org/10.1016/j.agwat.2022.108064" @default.
- W4310346532 hasPublicationYear "2023" @default.
- W4310346532 type Work @default.
- W4310346532 citedByCount "3" @default.
- W4310346532 countsByYear W43103465322023 @default.
- W4310346532 crossrefType "journal-article" @default.
- W4310346532 hasAuthorship W4310346532A5025633795 @default.
- W4310346532 hasAuthorship W4310346532A5027781871 @default.
- W4310346532 hasAuthorship W4310346532A5029667848 @default.
- W4310346532 hasAuthorship W4310346532A5063896198 @default.
- W4310346532 hasAuthorship W4310346532A5071773009 @default.
- W4310346532 hasAuthorship W4310346532A5084421942 @default.
- W4310346532 hasBestOaLocation W43103465321 @default.
- W4310346532 hasConcept C105795698 @default.
- W4310346532 hasConcept C118518473 @default.
- W4310346532 hasConcept C119857082 @default.
- W4310346532 hasConcept C120217122 @default.
- W4310346532 hasConcept C12267149 @default.
- W4310346532 hasConcept C128990827 @default.