Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310346536> ?p ?o ?g. }
- W4310346536 endingPage "116890" @default.
- W4310346536 startingPage "116890" @default.
- W4310346536 abstract "Evaporation is an important hydrological process in the water cycle, especially for water bodies. Machine Learning (ML) models have become accurate and powerful tools in predicting pan evaporation. Meanwhile, the black-box character and the consistency with the physical process can decrease the practical implication of ML models. To overcome such limitations, we attempt to develop an interpretable based-ML framework to predict daily pan evaporation using Extra Tree, XGBoost, SVR, and Deep Neural Network (DNN) ML models using hourly climate datasets. To that end, we integrated and employed the Shapely Additive explanations (SHAP), Sobol-based sensitivity analysis, and Local Interpretable Model-agnostic Explanations (LIME) to evaluate the interpretability of the models in predicting daily pan evaporation, at Sidi Mohammed Ben Abdellah (SMBA) weather station, in Morocco. The validation results of the models showed that the developed models are accurate in reproducing the daily pan evaporation with NSE ranging from 0.76 to 0.83 during the validation phase. Furthermore, the interpretability results of the ML models showed that the air temperature (Ta), solar radiation (Rs), followed by relative humidity (H) are the most important climate variables with inflection points of the Ta_median, Ta_mean, Rs_sum, H_mean, and w_std are 17.42 °C, 17.65 °C, 3.8 kw.m-2, 69.59%, and 1.25 m s-1, sequentially. Overall, the interpretability of the models showed a good consistency of the ML models with the real hydro-climatic process of evaporation in a semi-arid environment. Hence, the proposed methodology is powerful in enhancing the reliability and transparency of the developed models for predicting daily pan evaporation. Finally, the proposed approach is new insights to reduce the ''Black-Box'' character of ML models in hydrological studies." @default.
- W4310346536 created "2022-12-09" @default.
- W4310346536 creator A5010499635 @default.
- W4310346536 creator A5030710123 @default.
- W4310346536 creator A5058667161 @default.
- W4310346536 creator A5059823880 @default.
- W4310346536 creator A5062068385 @default.
- W4310346536 creator A5079204747 @default.
- W4310346536 date "2023-02-01" @default.
- W4310346536 modified "2023-10-13" @default.
- W4310346536 title "An interpretable machine learning approach based on DNN, SVR, Extra Tree, and XGBoost models for predicting daily pan evaporation" @default.
- W4310346536 cites W1978556322 @default.
- W4310346536 cites W1992538840 @default.
- W4310346536 cites W2010876855 @default.
- W4310346536 cites W2013355544 @default.
- W4310346536 cites W2023172093 @default.
- W4310346536 cites W2026247599 @default.
- W4310346536 cites W2026645785 @default.
- W4310346536 cites W2029262666 @default.
- W4310346536 cites W2033904036 @default.
- W4310346536 cites W2053269926 @default.
- W4310346536 cites W2056132907 @default.
- W4310346536 cites W2057543147 @default.
- W4310346536 cites W2088135986 @default.
- W4310346536 cites W2129888542 @default.
- W4310346536 cites W2146514017 @default.
- W4310346536 cites W2338247760 @default.
- W4310346536 cites W2558918493 @default.
- W4310346536 cites W2560398905 @default.
- W4310346536 cites W2569457803 @default.
- W4310346536 cites W2619390517 @default.
- W4310346536 cites W2766761250 @default.
- W4310346536 cites W2832506685 @default.
- W4310346536 cites W2892087143 @default.
- W4310346536 cites W2907891425 @default.
- W4310346536 cites W2921467030 @default.
- W4310346536 cites W2922056388 @default.
- W4310346536 cites W2936503027 @default.
- W4310346536 cites W2961472717 @default.
- W4310346536 cites W3004292736 @default.
- W4310346536 cites W3021784694 @default.
- W4310346536 cites W3022298391 @default.
- W4310346536 cites W3036708439 @default.
- W4310346536 cites W3043751190 @default.
- W4310346536 cites W3043791248 @default.
- W4310346536 cites W3081241543 @default.
- W4310346536 cites W3097879628 @default.
- W4310346536 cites W3117520445 @default.
- W4310346536 cites W3135039877 @default.
- W4310346536 cites W3138842059 @default.
- W4310346536 cites W3159592334 @default.
- W4310346536 cites W3161353573 @default.
- W4310346536 cites W3165441460 @default.
- W4310346536 cites W3170039947 @default.
- W4310346536 cites W3201537121 @default.
- W4310346536 cites W3214759127 @default.
- W4310346536 cites W4200073531 @default.
- W4310346536 cites W4200116793 @default.
- W4310346536 cites W4200294010 @default.
- W4310346536 cites W4205334888 @default.
- W4310346536 cites W4206911247 @default.
- W4310346536 cites W4210453541 @default.
- W4310346536 cites W4210624134 @default.
- W4310346536 cites W4210798809 @default.
- W4310346536 cites W4213187874 @default.
- W4310346536 cites W4214740551 @default.
- W4310346536 cites W4220996674 @default.
- W4310346536 cites W4223650861 @default.
- W4310346536 cites W4225279582 @default.
- W4310346536 cites W4281902005 @default.
- W4310346536 cites W4283766266 @default.
- W4310346536 cites W4286512666 @default.
- W4310346536 cites W836867855 @default.
- W4310346536 doi "https://doi.org/10.1016/j.jenvman.2022.116890" @default.
- W4310346536 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36459782" @default.
- W4310346536 hasPublicationYear "2023" @default.
- W4310346536 type Work @default.
- W4310346536 citedByCount "13" @default.
- W4310346536 countsByYear W43103465362022 @default.
- W4310346536 countsByYear W43103465362023 @default.
- W4310346536 crossrefType "journal-article" @default.
- W4310346536 hasAuthorship W4310346536A5010499635 @default.
- W4310346536 hasAuthorship W4310346536A5030710123 @default.
- W4310346536 hasAuthorship W4310346536A5058667161 @default.
- W4310346536 hasAuthorship W4310346536A5059823880 @default.
- W4310346536 hasAuthorship W4310346536A5062068385 @default.
- W4310346536 hasAuthorship W4310346536A5079204747 @default.
- W4310346536 hasConcept C105795698 @default.
- W4310346536 hasConcept C113174947 @default.
- W4310346536 hasConcept C119857082 @default.
- W4310346536 hasConcept C12267149 @default.
- W4310346536 hasConcept C134306372 @default.
- W4310346536 hasConcept C153294291 @default.
- W4310346536 hasConcept C154945302 @default.
- W4310346536 hasConcept C19499675 @default.
- W4310346536 hasConcept C205649164 @default.
- W4310346536 hasConcept C23430798 @default.
- W4310346536 hasConcept C2776436953 @default.