Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310346560> ?p ?o ?g. }
- W4310346560 endingPage "115762" @default.
- W4310346560 startingPage "115762" @default.
- W4310346560 abstract "The topology design under uncertainties is an acceptable framework for providing a safe design and optimum configuration of structures. In this regard, the accuracy, efficiency, and robustness of the analytical topology optimization coupled with reliability analysis are the main efforts for reliability-based topology optimization (RBTO) of continuous structures. In the present investigation, a hybrid RBTO approach is developed for robust iterative formulation of reliability loop and an effective and simple optimization approach for topology loop. A multi-level set analytical framework is proposed based on the performance measure approach to seek the optimum results under multi uncertainties in size, mechanical properties, and loads of structures. The considered topology optimization procedure to derive the optimal layout of the structure which is called moving iso-surface threshold (MIST) is a powerful and enhanced topology optimization method in which, unlike other optimization methods, it has the capability of having no direct sensitivity analysis making it easier and simple. The accelerated first-order reliability method is introduced for searching the most probability points in the reliability loop of the RBTO model. The proposed reliability method is developed based on a stable iterative formulation. For reducing the computational burden of the topology optimization loop, the machine learning approach given from the support vector regression (SVR) is applied for estimating the probabilistic constraints in the RBTO model. Four examples of 2D, and 3D compliance, 2D complaint mechanism problem, and frequency maximization are presented for validation and highlighting the abilities in having the most accuracy and safety levels of the proposed hybrid framework named SVR-TO-APMA. The results indicate that the hyperparameters of SVR are directly affected by the accuracy of RBTO results. The stability of the RBTO model is shown by the accelerated PMA and the optimum layout is different from topology optimization in comparison with the RBTO results for 3D compliance and frequency maximization problems. The optimum design with uncertainties is increased by about 40%–90% with a reliability index of 3 compared to TO results for the studied example." @default.
- W4310346560 created "2022-12-09" @default.
- W4310346560 creator A5049427526 @default.
- W4310346560 creator A5066520974 @default.
- W4310346560 date "2023-02-01" @default.
- W4310346560 modified "2023-10-13" @default.
- W4310346560 title "SVR-TO-APMA: Hybrid efficient modelling and topology framework for stable topology optimization with accelerated performance measure approach" @default.
- W4310346560 cites W1862636205 @default.
- W4310346560 cites W1901753338 @default.
- W4310346560 cites W1903329854 @default.
- W4310346560 cites W1949137045 @default.
- W4310346560 cites W1963956449 @default.
- W4310346560 cites W1999236332 @default.
- W4310346560 cites W2003198065 @default.
- W4310346560 cites W2016922085 @default.
- W4310346560 cites W2020003164 @default.
- W4310346560 cites W2041380261 @default.
- W4310346560 cites W2041441816 @default.
- W4310346560 cites W2045256553 @default.
- W4310346560 cites W2053724324 @default.
- W4310346560 cites W2069697210 @default.
- W4310346560 cites W2078804563 @default.
- W4310346560 cites W2079294419 @default.
- W4310346560 cites W2135249089 @default.
- W4310346560 cites W2142128101 @default.
- W4310346560 cites W2196859838 @default.
- W4310346560 cites W2292182673 @default.
- W4310346560 cites W2298816791 @default.
- W4310346560 cites W2472783978 @default.
- W4310346560 cites W2514273902 @default.
- W4310346560 cites W2520703132 @default.
- W4310346560 cites W2522751439 @default.
- W4310346560 cites W2550076369 @default.
- W4310346560 cites W2592961093 @default.
- W4310346560 cites W2593715324 @default.
- W4310346560 cites W2752274752 @default.
- W4310346560 cites W2766476565 @default.
- W4310346560 cites W2779728855 @default.
- W4310346560 cites W2789789891 @default.
- W4310346560 cites W2790287872 @default.
- W4310346560 cites W2800788591 @default.
- W4310346560 cites W2803343111 @default.
- W4310346560 cites W2809971769 @default.
- W4310346560 cites W2885853290 @default.
- W4310346560 cites W2891452005 @default.
- W4310346560 cites W2895906731 @default.
- W4310346560 cites W2904927253 @default.
- W4310346560 cites W2925244693 @default.
- W4310346560 cites W2926742906 @default.
- W4310346560 cites W2946119958 @default.
- W4310346560 cites W2954654691 @default.
- W4310346560 cites W2966205600 @default.
- W4310346560 cites W2970256756 @default.
- W4310346560 cites W2981185037 @default.
- W4310346560 cites W2996985222 @default.
- W4310346560 cites W2998136535 @default.
- W4310346560 cites W3000027466 @default.
- W4310346560 cites W3006374477 @default.
- W4310346560 cites W3010795939 @default.
- W4310346560 cites W3015946963 @default.
- W4310346560 cites W3019895925 @default.
- W4310346560 cites W3026740645 @default.
- W4310346560 cites W3029340413 @default.
- W4310346560 cites W3091674381 @default.
- W4310346560 cites W3093933136 @default.
- W4310346560 cites W3104938539 @default.
- W4310346560 cites W3153941078 @default.
- W4310346560 cites W3197381489 @default.
- W4310346560 cites W3209864672 @default.
- W4310346560 cites W4200037893 @default.
- W4310346560 cites W4206151211 @default.
- W4310346560 cites W4214732853 @default.
- W4310346560 cites W4214738420 @default.
- W4310346560 cites W4223507115 @default.
- W4310346560 cites W4224015236 @default.
- W4310346560 cites W4225140965 @default.
- W4310346560 cites W4225395004 @default.
- W4310346560 cites W4229041164 @default.
- W4310346560 cites W4280555725 @default.
- W4310346560 cites W4281869476 @default.
- W4310346560 doi "https://doi.org/10.1016/j.cma.2022.115762" @default.
- W4310346560 hasPublicationYear "2023" @default.
- W4310346560 type Work @default.
- W4310346560 citedByCount "2" @default.
- W4310346560 countsByYear W43103465602023 @default.
- W4310346560 crossrefType "journal-article" @default.
- W4310346560 hasAuthorship W4310346560A5049427526 @default.
- W4310346560 hasAuthorship W4310346560A5066520974 @default.
- W4310346560 hasConcept C104317684 @default.
- W4310346560 hasConcept C114614502 @default.
- W4310346560 hasConcept C126255220 @default.
- W4310346560 hasConcept C127413603 @default.
- W4310346560 hasConcept C135628077 @default.
- W4310346560 hasConcept C154945302 @default.
- W4310346560 hasConcept C184720557 @default.
- W4310346560 hasConcept C185592680 @default.
- W4310346560 hasConcept C189216461 @default.
- W4310346560 hasConcept C21200559 @default.