Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310347668> ?p ?o ?g. }
- W4310347668 endingPage "123690" @default.
- W4310347668 startingPage "123690" @default.
- W4310347668 abstract "The characteristics of thin liquid films flowing down a uniformly heated and inclined plane are investigated, with heat transfer across the wavy films quantified using up-to-date optical measurement techniques based on laser-induced fluorescence (LIF). A planar two-colour LIF technique provides the temperature distribution inside the films, but requires a high degree of wave regularity for the spatial reconstruction. A pointwise adaptation of the aforementioned technique, with much finer temporal sampling, provides simultaneous measurements of the average temperature over the film height and of the film thickness. Despite the loss of spatial resolution, the latter technique can be applied to diverse situations, especially when the waves lose their regularity and have large amplitudes. With these two approaches, the enhancement of heat transfer due to surface waves is traced along the film flow. A growing thermal boundary layer is found close to the inlet of the flow (i.e., first few cm), but its thickness remains small relative to the film thickness. Therefore, the heat transfer coefficient (HTC) is observed to be insensitive to the shape and amplitude of the waves at the free surface. A critical distance is necessary for the thermal boundary layer to be thick enough to interact with the flow structures associated with the waves, and the critical length scales with the Peclet number of the flow based on the specific flow rate. Several experiments are conducted to quantify the influence of the main flow parameters that control the HTC, such as the Reynolds number, the inclination angle and the wave frequency. For moderate wave amplitudes, the internal structure of the film is insensitive to the wave dynamics, and the temperature distribution is essentially dominated by thermal diffusion in the direction normal to the heated wall. Classical Nusselt theory is found to be applicable to the unperturbed (flat) film flows with some limited adjustments to predict the heat transfer rate. However, for the waves that have a larger amplitude, the classical Nusselt theory diverges from the experimental results. A sharp increase of the HTC by several tens of percent is observed over just a few cm, compared to an equivalent undisturbed liquid film with the same Reynolds number. Refined images of the temperature field are then used to better understand the mechanisms by which heat transfer is enhanced. Mixing appears in regions close to the wave front, then progressively extends to other film regions, tending to make the temperature more homogeneous. This has a strong effect on the local HTC in the troughs of the waves, with deviations of up to 40% relative to the flat film theory. Finally, a loss of wave regularity, observed after a few tens of cm from the inlet, accelerates the mixing by further altering the distribution of the temperature field over the entire liquid domain." @default.
- W4310347668 created "2022-12-09" @default.
- W4310347668 creator A5024979251 @default.
- W4310347668 creator A5028736539 @default.
- W4310347668 creator A5042475469 @default.
- W4310347668 creator A5066765963 @default.
- W4310347668 creator A5089900163 @default.
- W4310347668 date "2023-03-01" @default.
- W4310347668 modified "2023-10-18" @default.
- W4310347668 title "Heat transfer enhancement in wavy falling films studied by laser-induced fluorescence" @default.
- W4310347668 cites W1496130876 @default.
- W4310347668 cites W1965897773 @default.
- W4310347668 cites W1973691715 @default.
- W4310347668 cites W1974555293 @default.
- W4310347668 cites W1983361474 @default.
- W4310347668 cites W1994624892 @default.
- W4310347668 cites W2001398731 @default.
- W4310347668 cites W2004407840 @default.
- W4310347668 cites W2012297671 @default.
- W4310347668 cites W2018700823 @default.
- W4310347668 cites W2024145391 @default.
- W4310347668 cites W2026549731 @default.
- W4310347668 cites W2026774492 @default.
- W4310347668 cites W2054546695 @default.
- W4310347668 cites W2075255389 @default.
- W4310347668 cites W2078992395 @default.
- W4310347668 cites W2090008212 @default.
- W4310347668 cites W2094156837 @default.
- W4310347668 cites W2103099297 @default.
- W4310347668 cites W2119505310 @default.
- W4310347668 cites W2157424608 @default.
- W4310347668 cites W2204867151 @default.
- W4310347668 cites W2221889323 @default.
- W4310347668 cites W2337125629 @default.
- W4310347668 cites W2531635254 @default.
- W4310347668 cites W2572047164 @default.
- W4310347668 cites W2574402625 @default.
- W4310347668 cites W2619194104 @default.
- W4310347668 cites W2732208794 @default.
- W4310347668 cites W2782488084 @default.
- W4310347668 cites W2793885800 @default.
- W4310347668 cites W2898618329 @default.
- W4310347668 cites W3107952623 @default.
- W4310347668 cites W3159733898 @default.
- W4310347668 cites W4224248931 @default.
- W4310347668 cites W643036508 @default.
- W4310347668 doi "https://doi.org/10.1016/j.ijheatmasstransfer.2022.123690" @default.
- W4310347668 hasPublicationYear "2023" @default.
- W4310347668 type Work @default.
- W4310347668 citedByCount "4" @default.
- W4310347668 countsByYear W43103476682023 @default.
- W4310347668 crossrefType "journal-article" @default.
- W4310347668 hasAuthorship W4310347668A5024979251 @default.
- W4310347668 hasAuthorship W4310347668A5028736539 @default.
- W4310347668 hasAuthorship W4310347668A5042475469 @default.
- W4310347668 hasAuthorship W4310347668A5066765963 @default.
- W4310347668 hasAuthorship W4310347668A5089900163 @default.
- W4310347668 hasBestOaLocation W43103476683 @default.
- W4310347668 hasConcept C111603439 @default.
- W4310347668 hasConcept C120665830 @default.
- W4310347668 hasConcept C121332964 @default.
- W4310347668 hasConcept C121684516 @default.
- W4310347668 hasConcept C1342733 @default.
- W4310347668 hasConcept C134786449 @default.
- W4310347668 hasConcept C180205008 @default.
- W4310347668 hasConcept C182748727 @default.
- W4310347668 hasConcept C192562407 @default.
- W4310347668 hasConcept C196558001 @default.
- W4310347668 hasConcept C205684552 @default.
- W4310347668 hasConcept C38349280 @default.
- W4310347668 hasConcept C41008148 @default.
- W4310347668 hasConcept C50517652 @default.
- W4310347668 hasConcept C520434653 @default.
- W4310347668 hasConcept C57879066 @default.
- W4310347668 hasConcept C77433292 @default.
- W4310347668 hasConceptScore W4310347668C111603439 @default.
- W4310347668 hasConceptScore W4310347668C120665830 @default.
- W4310347668 hasConceptScore W4310347668C121332964 @default.
- W4310347668 hasConceptScore W4310347668C121684516 @default.
- W4310347668 hasConceptScore W4310347668C1342733 @default.
- W4310347668 hasConceptScore W4310347668C134786449 @default.
- W4310347668 hasConceptScore W4310347668C180205008 @default.
- W4310347668 hasConceptScore W4310347668C182748727 @default.
- W4310347668 hasConceptScore W4310347668C192562407 @default.
- W4310347668 hasConceptScore W4310347668C196558001 @default.
- W4310347668 hasConceptScore W4310347668C205684552 @default.
- W4310347668 hasConceptScore W4310347668C38349280 @default.
- W4310347668 hasConceptScore W4310347668C41008148 @default.
- W4310347668 hasConceptScore W4310347668C50517652 @default.
- W4310347668 hasConceptScore W4310347668C520434653 @default.
- W4310347668 hasConceptScore W4310347668C57879066 @default.
- W4310347668 hasConceptScore W4310347668C77433292 @default.
- W4310347668 hasFunder F4320320883 @default.
- W4310347668 hasLocation W43103476681 @default.
- W4310347668 hasLocation W43103476682 @default.
- W4310347668 hasLocation W43103476683 @default.
- W4310347668 hasLocation W43103476684 @default.
- W4310347668 hasOpenAccess W4310347668 @default.