Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310348277> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4310348277 endingPage "2514" @default.
- W4310348277 startingPage "2497" @default.
- W4310348277 abstract "Link prediction, also known as Knowledge Graph Completion (KGC), is the common task in Knowledge Graphs (KGs) to predict missing connections between entities. Most existing methods focus on designing shallow, scalable models, which have less expressive than deep, multi-layer models. Furthermore, most operations like addition, matrix multiplications or factorization are handcrafted based on a few known relation patterns in several well-known datasets, such as FB15k, WN18, etc. However, due to the diversity and complex nature of real-world data distribution, it is inherently difficult to preset all latent patterns. To address this issue, we propose KGE-ANS, a novel knowledge graph embedding framework for general link prediction tasks using automatic network search. KGE-ANS can learn a deep, multi-layer effective architecture to adapt to different datasets through neural architecture search. In addition, the general search space we designed is tailored for KG tasks. We perform extensive experiments on benchmark datasets and the dataset constructed in this paper. The results show that our KGE-ANS outperforms several state-of-the-art methods, especially on these datasets with complex relation patterns." @default.
- W4310348277 created "2022-12-09" @default.
- W4310348277 creator A5012056940 @default.
- W4310348277 creator A5038798689 @default.
- W4310348277 date "2023-01-01" @default.
- W4310348277 modified "2023-10-18" @default.
- W4310348277 title "Knowledge Graph Representation Learning Based on Automatic Network Search for Link Prediction" @default.
- W4310348277 cites W1552847225 @default.
- W4310348277 cites W1801721664 @default.
- W4310348277 cites W1832693441 @default.
- W4310348277 cites W2283196293 @default.
- W4310348277 cites W2728059831 @default.
- W4310348277 cites W2774837955 @default.
- W4310348277 cites W2951105272 @default.
- W4310348277 cites W2966298461 @default.
- W4310348277 doi "https://doi.org/10.32604/cmes.2023.024332" @default.
- W4310348277 hasPublicationYear "2023" @default.
- W4310348277 type Work @default.
- W4310348277 citedByCount "0" @default.
- W4310348277 crossrefType "journal-article" @default.
- W4310348277 hasAuthorship W4310348277A5012056940 @default.
- W4310348277 hasAuthorship W4310348277A5038798689 @default.
- W4310348277 hasBestOaLocation W43103482771 @default.
- W4310348277 hasConcept C108583219 @default.
- W4310348277 hasConcept C119857082 @default.
- W4310348277 hasConcept C121332964 @default.
- W4310348277 hasConcept C124101348 @default.
- W4310348277 hasConcept C132525143 @default.
- W4310348277 hasConcept C13280743 @default.
- W4310348277 hasConcept C154945302 @default.
- W4310348277 hasConcept C158693339 @default.
- W4310348277 hasConcept C185798385 @default.
- W4310348277 hasConcept C205649164 @default.
- W4310348277 hasConcept C25343380 @default.
- W4310348277 hasConcept C41008148 @default.
- W4310348277 hasConcept C41608201 @default.
- W4310348277 hasConcept C42355184 @default.
- W4310348277 hasConcept C48044578 @default.
- W4310348277 hasConcept C50644808 @default.
- W4310348277 hasConcept C59404180 @default.
- W4310348277 hasConcept C62520636 @default.
- W4310348277 hasConcept C77088390 @default.
- W4310348277 hasConcept C80444323 @default.
- W4310348277 hasConceptScore W4310348277C108583219 @default.
- W4310348277 hasConceptScore W4310348277C119857082 @default.
- W4310348277 hasConceptScore W4310348277C121332964 @default.
- W4310348277 hasConceptScore W4310348277C124101348 @default.
- W4310348277 hasConceptScore W4310348277C132525143 @default.
- W4310348277 hasConceptScore W4310348277C13280743 @default.
- W4310348277 hasConceptScore W4310348277C154945302 @default.
- W4310348277 hasConceptScore W4310348277C158693339 @default.
- W4310348277 hasConceptScore W4310348277C185798385 @default.
- W4310348277 hasConceptScore W4310348277C205649164 @default.
- W4310348277 hasConceptScore W4310348277C25343380 @default.
- W4310348277 hasConceptScore W4310348277C41008148 @default.
- W4310348277 hasConceptScore W4310348277C41608201 @default.
- W4310348277 hasConceptScore W4310348277C42355184 @default.
- W4310348277 hasConceptScore W4310348277C48044578 @default.
- W4310348277 hasConceptScore W4310348277C50644808 @default.
- W4310348277 hasConceptScore W4310348277C59404180 @default.
- W4310348277 hasConceptScore W4310348277C62520636 @default.
- W4310348277 hasConceptScore W4310348277C77088390 @default.
- W4310348277 hasConceptScore W4310348277C80444323 @default.
- W4310348277 hasIssue "3" @default.
- W4310348277 hasLocation W43103482771 @default.
- W4310348277 hasOpenAccess W4310348277 @default.
- W4310348277 hasPrimaryLocation W43103482771 @default.
- W4310348277 hasRelatedWork W112744582 @default.
- W4310348277 hasRelatedWork W3035116611 @default.
- W4310348277 hasRelatedWork W3094605108 @default.
- W4310348277 hasRelatedWork W4223943233 @default.
- W4310348277 hasRelatedWork W4287763734 @default.
- W4310348277 hasRelatedWork W4312200629 @default.
- W4310348277 hasRelatedWork W4360585206 @default.
- W4310348277 hasRelatedWork W4364306694 @default.
- W4310348277 hasRelatedWork W4380075502 @default.
- W4310348277 hasRelatedWork W4380086463 @default.
- W4310348277 hasVolume "135" @default.
- W4310348277 isParatext "false" @default.
- W4310348277 isRetracted "false" @default.
- W4310348277 workType "article" @default.