Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310348284> ?p ?o ?g. }
- W4310348284 abstract "Safety in the construction industry has always been a focus of attention. Existing methods of detecting unsafe behavior of workers relied primarily on manual detection. Not only did it consume significant time and money, but it also inevitably produced omissions. Currently, automated techniques for detecting unsafe behaviors rely only on the unsafe factors of workers’ ontology to judge their behaviors, making it difficult to understand unsafe behaviors in complex scenes. To address the presented problems, this study proposed a method to automatically extract workers’ unsafe behaviors by combining information from complex scenes—an image captioning based on an attention mechanism. First, three different sets of image captioning models were constructed using convolutional neural network (CNN), which are widely used in AI. These models could extract key information from complex scenes was constructed. Then, two datasets dedicated to the construction domain were created for method validation. Finally, three sets of experiments were conducted by combining the datasets and the three different sets of models. The results showed that the method could detect the worker’s job type and output the interaction behavior between the worker and the target (unsafe behavior) based on the environmental information in the construction images. We introduced environmental information into the determination of workers’ unsafe behaviors for the first time and not only output the worker’s job type but also determine the worker’s behavior. This allows the model output to be better for ergonomic analysis." @default.
- W4310348284 created "2022-12-09" @default.
- W4310348284 creator A5013486785 @default.
- W4310348284 creator A5077820750 @default.
- W4310348284 creator A5088956441 @default.
- W4310348284 date "2023-02-01" @default.
- W4310348284 modified "2023-10-01" @default.
- W4310348284 title "Extracting Worker Unsafe Behaviors from Construction Images Using Image Captioning with Deep Learning–Based Attention Mechanism" @default.
- W4310348284 cites W2064675550 @default.
- W4310348284 cites W2076871221 @default.
- W4310348284 cites W2089253196 @default.
- W4310348284 cites W2097117768 @default.
- W4310348284 cites W2194775991 @default.
- W4310348284 cites W2381252496 @default.
- W4310348284 cites W2508434748 @default.
- W4310348284 cites W2548006041 @default.
- W4310348284 cites W2575842049 @default.
- W4310348284 cites W2611338136 @default.
- W4310348284 cites W2745461083 @default.
- W4310348284 cites W2761891891 @default.
- W4310348284 cites W2768148056 @default.
- W4310348284 cites W2770013142 @default.
- W4310348284 cites W2792224473 @default.
- W4310348284 cites W2795151422 @default.
- W4310348284 cites W2796105695 @default.
- W4310348284 cites W2801714535 @default.
- W4310348284 cites W2803869933 @default.
- W4310348284 cites W2805005207 @default.
- W4310348284 cites W2807524661 @default.
- W4310348284 cites W2884455588 @default.
- W4310348284 cites W2889035772 @default.
- W4310348284 cites W2902603441 @default.
- W4310348284 cites W2903099067 @default.
- W4310348284 cites W2916880046 @default.
- W4310348284 cites W2963037989 @default.
- W4310348284 cites W2963084599 @default.
- W4310348284 cites W2963446712 @default.
- W4310348284 cites W2990500716 @default.
- W4310348284 cites W2990754793 @default.
- W4310348284 cites W2990784565 @default.
- W4310348284 cites W3000144357 @default.
- W4310348284 cites W3008539688 @default.
- W4310348284 cites W3034624594 @default.
- W4310348284 cites W3038377241 @default.
- W4310348284 cites W3043238989 @default.
- W4310348284 cites W3097923824 @default.
- W4310348284 cites W3106586859 @default.
- W4310348284 cites W3108310349 @default.
- W4310348284 cites W3123891196 @default.
- W4310348284 cites W3181303694 @default.
- W4310348284 cites W3188409531 @default.
- W4310348284 cites W3193060384 @default.
- W4310348284 cites W3198673422 @default.
- W4310348284 cites W3201064488 @default.
- W4310348284 cites W3204172738 @default.
- W4310348284 cites W3205511895 @default.
- W4310348284 cites W3206281034 @default.
- W4310348284 cites W4200291576 @default.
- W4310348284 cites W4210499142 @default.
- W4310348284 cites W4210916060 @default.
- W4310348284 cites W4280608862 @default.
- W4310348284 doi "https://doi.org/10.1061/jcemd4.coeng-12096" @default.
- W4310348284 hasPublicationYear "2023" @default.
- W4310348284 type Work @default.
- W4310348284 citedByCount "2" @default.
- W4310348284 countsByYear W43103482842023 @default.
- W4310348284 crossrefType "journal-article" @default.
- W4310348284 hasAuthorship W4310348284A5013486785 @default.
- W4310348284 hasAuthorship W4310348284A5077820750 @default.
- W4310348284 hasAuthorship W4310348284A5088956441 @default.
- W4310348284 hasConcept C107457646 @default.
- W4310348284 hasConcept C111472728 @default.
- W4310348284 hasConcept C115961682 @default.
- W4310348284 hasConcept C119857082 @default.
- W4310348284 hasConcept C120665830 @default.
- W4310348284 hasConcept C121332964 @default.
- W4310348284 hasConcept C134306372 @default.
- W4310348284 hasConcept C138885662 @default.
- W4310348284 hasConcept C154945302 @default.
- W4310348284 hasConcept C157657479 @default.
- W4310348284 hasConcept C192209626 @default.
- W4310348284 hasConcept C25810664 @default.
- W4310348284 hasConcept C33923547 @default.
- W4310348284 hasConcept C36503486 @default.
- W4310348284 hasConcept C38652104 @default.
- W4310348284 hasConcept C41008148 @default.
- W4310348284 hasConcept C81363708 @default.
- W4310348284 hasConcept C89611455 @default.
- W4310348284 hasConceptScore W4310348284C107457646 @default.
- W4310348284 hasConceptScore W4310348284C111472728 @default.
- W4310348284 hasConceptScore W4310348284C115961682 @default.
- W4310348284 hasConceptScore W4310348284C119857082 @default.
- W4310348284 hasConceptScore W4310348284C120665830 @default.
- W4310348284 hasConceptScore W4310348284C121332964 @default.
- W4310348284 hasConceptScore W4310348284C134306372 @default.
- W4310348284 hasConceptScore W4310348284C138885662 @default.
- W4310348284 hasConceptScore W4310348284C154945302 @default.
- W4310348284 hasConceptScore W4310348284C157657479 @default.
- W4310348284 hasConceptScore W4310348284C192209626 @default.
- W4310348284 hasConceptScore W4310348284C25810664 @default.