Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310349537> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4310349537 endingPage "151" @default.
- W4310349537 startingPage "109" @default.
- W4310349537 abstract "The chapter shows how the classical adaptive filtering algorithms can be adapted to distributed learning. In distributed learning, there is a set of adaptive filtering placed at nodes utilizing a local input and desired signals. These distributed networks of sensor nodes are located at distinct positions, which might improve the reliability and robustness of the parameter estimation in comparison to stand-alone adaptive filters. In distributed adaptive networks, parameter estimation might be obtained in a centralized form or a decentralized form. The centralized case processes the signals from all nodes of the network in a single fusion center, whereas in the decentralized case, processing is performed locally followed by a proper combination of partial estimates to result in a consensus parameter estimate. The main drawbacks of the centralized configuration are its data communication and computational costs, particularly in networks with a large number of nodes. On the other hand, the decentralized estimators require fewer data to feed the estimators and improve on robustness. The provides a discussion on equilibrium and consensus using arguments drawn from the pari-mutuel betting system. The expert opinion pool is the concept to induce improved estimation and data modeling, utilizing De-Groot’s algorithm and Markov chains as tools to probate equilibrium at consensus. It also introduces the distributed versions of the LMS and RLS adaptive filtering algorithms with emphasis on the decentralized parameter estimation case. This chapter also addresses how data broadcasting can be confined to a subset of nodes so that the overall network reduces the power consumption and bandwidth usage. Then, the chapter discusses a strategy to incorporate a data selection based on the SM adaptive filtering." @default.
- W4310349537 created "2022-12-09" @default.
- W4310349537 date "2022-11-30" @default.
- W4310349537 modified "2023-09-23" @default.
- W4310349537 title "Distributed Adaptive Filters" @default.
- W4310349537 doi "https://doi.org/10.1017/9781108896139.005" @default.
- W4310349537 hasPublicationYear "2022" @default.
- W4310349537 type Work @default.
- W4310349537 citedByCount "0" @default.
- W4310349537 crossrefType "book-chapter" @default.
- W4310349537 hasConcept C102248274 @default.
- W4310349537 hasConcept C104317684 @default.
- W4310349537 hasConcept C105795698 @default.
- W4310349537 hasConcept C11413529 @default.
- W4310349537 hasConcept C119857082 @default.
- W4310349537 hasConcept C120314980 @default.
- W4310349537 hasConcept C126255220 @default.
- W4310349537 hasConcept C130120984 @default.
- W4310349537 hasConcept C149946192 @default.
- W4310349537 hasConcept C185429906 @default.
- W4310349537 hasConcept C185592680 @default.
- W4310349537 hasConcept C2781234732 @default.
- W4310349537 hasConcept C2983222225 @default.
- W4310349537 hasConcept C33923547 @default.
- W4310349537 hasConcept C41008148 @default.
- W4310349537 hasConcept C55493867 @default.
- W4310349537 hasConcept C555944384 @default.
- W4310349537 hasConcept C63479239 @default.
- W4310349537 hasConcept C70061542 @default.
- W4310349537 hasConcept C76155785 @default.
- W4310349537 hasConcept C98763669 @default.
- W4310349537 hasConceptScore W4310349537C102248274 @default.
- W4310349537 hasConceptScore W4310349537C104317684 @default.
- W4310349537 hasConceptScore W4310349537C105795698 @default.
- W4310349537 hasConceptScore W4310349537C11413529 @default.
- W4310349537 hasConceptScore W4310349537C119857082 @default.
- W4310349537 hasConceptScore W4310349537C120314980 @default.
- W4310349537 hasConceptScore W4310349537C126255220 @default.
- W4310349537 hasConceptScore W4310349537C130120984 @default.
- W4310349537 hasConceptScore W4310349537C149946192 @default.
- W4310349537 hasConceptScore W4310349537C185429906 @default.
- W4310349537 hasConceptScore W4310349537C185592680 @default.
- W4310349537 hasConceptScore W4310349537C2781234732 @default.
- W4310349537 hasConceptScore W4310349537C2983222225 @default.
- W4310349537 hasConceptScore W4310349537C33923547 @default.
- W4310349537 hasConceptScore W4310349537C41008148 @default.
- W4310349537 hasConceptScore W4310349537C55493867 @default.
- W4310349537 hasConceptScore W4310349537C555944384 @default.
- W4310349537 hasConceptScore W4310349537C63479239 @default.
- W4310349537 hasConceptScore W4310349537C70061542 @default.
- W4310349537 hasConceptScore W4310349537C76155785 @default.
- W4310349537 hasConceptScore W4310349537C98763669 @default.
- W4310349537 hasLocation W43103495371 @default.
- W4310349537 hasOpenAccess W4310349537 @default.
- W4310349537 hasPrimaryLocation W43103495371 @default.
- W4310349537 hasRelatedWork W105104302 @default.
- W4310349537 hasRelatedWork W1485627940 @default.
- W4310349537 hasRelatedWork W1521406429 @default.
- W4310349537 hasRelatedWork W1534871385 @default.
- W4310349537 hasRelatedWork W1556611670 @default.
- W4310349537 hasRelatedWork W1566886392 @default.
- W4310349537 hasRelatedWork W2013919567 @default.
- W4310349537 hasRelatedWork W2385146268 @default.
- W4310349537 hasRelatedWork W2998813341 @default.
- W4310349537 hasRelatedWork W2097706629 @default.
- W4310349537 isParatext "false" @default.
- W4310349537 isRetracted "false" @default.
- W4310349537 workType "book-chapter" @default.