Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310349970> ?p ?o ?g. }
- W4310349970 endingPage "108056" @default.
- W4310349970 startingPage "108056" @default.
- W4310349970 abstract "In cotton, an optimal balance between vegetative and reproductive growth will lead to high yields and water-use efficiency. Remote sensing estimations of vegetation variables such as crop coefficient (Kc), Leaf Area Index (LAI), and crop height during plant development can improve irrigation management. Optical and Synthetic Aperture Radar (SAR) satellite imagery can be a useful data source since they provide synoptic cover at fixed time intervals. Furthermore, they can better capture the spatial variability in the field compared to point measurements. Since clouds limit optical observations at times, the combination with SAR can provide information during cloudy periods. This study utilized optical imagery acquired by Sentinel-2 and SAR imagery acquired by Sentinel-1 over cotton fields in Israel. The Sentinel-2-based vegetation indices that are best suited for cotton monitoring were identified, and the most robust Sentinel-2 models for Kc, LAI, and height estimation achieved R2 = 0.879, RMSE= 0.0645 (MERIS Terrestrial Chlorophyll Index, MTCI); R2 = 0.9535, RMSE= 0.8 (MTCI); and R2 = 0.8883, RMSE= 10 cm (Enhanced Vegetation Index, EVI), respectively. Additionally, a model based on the output of the SNAP Biophysical Processor LAI estimation algorithm was superior to the empirical LAI models of the best-performing vegetation indices (R2 =0.9717, RMSE=0.6). The most robust Sentinel-1 models were obtained by applying an innovative local incidence angle normalization method with R2 = 0.7913, RMSE= 0.0925; R2 = 0.6699, RMSE= 2.3; R2 = 0.6586, RMSE= 18 cm for the Kc, LAI, and height estimation, respectively. This work paves the way for future studies to design decision support systems for better irrigation management in cotton, even at the sub-plot level, by monitoring the heterogeneous development of the crop from space and adapting the irrigation accordingly to reach the target development at different growth stages during the season." @default.
- W4310349970 created "2022-12-09" @default.
- W4310349970 creator A5026290764 @default.
- W4310349970 creator A5040284419 @default.
- W4310349970 creator A5064090994 @default.
- W4310349970 creator A5065274559 @default.
- W4310349970 creator A5065909484 @default.
- W4310349970 creator A5082817470 @default.
- W4310349970 date "2023-02-01" @default.
- W4310349970 modified "2023-09-26" @default.
- W4310349970 title "Using Sentinel-1 and Sentinel-2 imagery for estimating cotton crop coefficient, height, and Leaf Area Index" @default.
- W4310349970 cites W1838347895 @default.
- W4310349970 cites W1964217023 @default.
- W4310349970 cites W1974036734 @default.
- W4310349970 cites W1991929991 @default.
- W4310349970 cites W1998842586 @default.
- W4310349970 cites W2005146932 @default.
- W4310349970 cites W2007342648 @default.
- W4310349970 cites W2015043241 @default.
- W4310349970 cites W2027694964 @default.
- W4310349970 cites W2035994869 @default.
- W4310349970 cites W2038818899 @default.
- W4310349970 cites W2058312673 @default.
- W4310349970 cites W2060897350 @default.
- W4310349970 cites W2063623478 @default.
- W4310349970 cites W2080441468 @default.
- W4310349970 cites W2084744129 @default.
- W4310349970 cites W2087463450 @default.
- W4310349970 cites W2088339646 @default.
- W4310349970 cites W2097787033 @default.
- W4310349970 cites W2113410727 @default.
- W4310349970 cites W2145058632 @default.
- W4310349970 cites W2149813070 @default.
- W4310349970 cites W2154238733 @default.
- W4310349970 cites W2169087452 @default.
- W4310349970 cites W2171979590 @default.
- W4310349970 cites W2263979804 @default.
- W4310349970 cites W2487751212 @default.
- W4310349970 cites W2531841959 @default.
- W4310349970 cites W2617056706 @default.
- W4310349970 cites W2783679944 @default.
- W4310349970 cites W2805036018 @default.
- W4310349970 cites W2886775386 @default.
- W4310349970 cites W2914237936 @default.
- W4310349970 cites W2938239749 @default.
- W4310349970 cites W2960181076 @default.
- W4310349970 cites W2963402025 @default.
- W4310349970 cites W2964683531 @default.
- W4310349970 cites W2964731166 @default.
- W4310349970 cites W3046246537 @default.
- W4310349970 cites W3085271102 @default.
- W4310349970 cites W3138398546 @default.
- W4310349970 cites W3160199649 @default.
- W4310349970 cites W3177173805 @default.
- W4310349970 cites W3177200989 @default.
- W4310349970 cites W4211134308 @default.
- W4310349970 cites W4283268934 @default.
- W4310349970 cites W51106753 @default.
- W4310349970 doi "https://doi.org/10.1016/j.agwat.2022.108056" @default.
- W4310349970 hasPublicationYear "2023" @default.
- W4310349970 type Work @default.
- W4310349970 citedByCount "4" @default.
- W4310349970 countsByYear W43103499702022 @default.
- W4310349970 countsByYear W43103499702023 @default.
- W4310349970 crossrefType "journal-article" @default.
- W4310349970 hasAuthorship W4310349970A5026290764 @default.
- W4310349970 hasAuthorship W4310349970A5040284419 @default.
- W4310349970 hasAuthorship W4310349970A5064090994 @default.
- W4310349970 hasAuthorship W4310349970A5065274559 @default.
- W4310349970 hasAuthorship W4310349970A5065909484 @default.
- W4310349970 hasAuthorship W4310349970A5082817470 @default.
- W4310349970 hasBestOaLocation W43103499701 @default.
- W4310349970 hasConcept C105795698 @default.
- W4310349970 hasConcept C128990827 @default.
- W4310349970 hasConcept C133199616 @default.
- W4310349970 hasConcept C139945424 @default.
- W4310349970 hasConcept C142724271 @default.
- W4310349970 hasConcept C1549246 @default.
- W4310349970 hasConcept C199360897 @default.
- W4310349970 hasConcept C205649164 @default.
- W4310349970 hasConcept C25989453 @default.
- W4310349970 hasConcept C2775938548 @default.
- W4310349970 hasConcept C2776133958 @default.
- W4310349970 hasConcept C2778102629 @default.
- W4310349970 hasConcept C2780376076 @default.
- W4310349970 hasConcept C33923547 @default.
- W4310349970 hasConcept C39432304 @default.
- W4310349970 hasConcept C41008148 @default.
- W4310349970 hasConcept C62649853 @default.
- W4310349970 hasConcept C6557445 @default.
- W4310349970 hasConcept C71924100 @default.
- W4310349970 hasConcept C78869512 @default.
- W4310349970 hasConcept C86803240 @default.
- W4310349970 hasConcept C87360688 @default.
- W4310349970 hasConceptScore W4310349970C105795698 @default.
- W4310349970 hasConceptScore W4310349970C128990827 @default.
- W4310349970 hasConceptScore W4310349970C133199616 @default.
- W4310349970 hasConceptScore W4310349970C139945424 @default.