Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310356612> ?p ?o ?g. }
- W4310356612 abstract "Adipose-derived mesenchymal stromal cells (MSC(AT)) display immunomodulatory and angiogenic properties, but an improved understanding of quantitative critical quality attributes (CQAs) that inform basal MSC(AT) fitness ranges for immunomodulatory and/or angiogenic applications is urgently needed for effective clinical translation. We constructed an in vitro matrix of multivariate readouts to identify putative CQAs that were sensitive enough to discriminate between specific critical processing parameters (CPPs) chosen for their ability to enhance MSC immunomodulatory and angiogenic potencies, with consideration for donor heterogeneity. We compared 3D aggregate culture conditions (3D normoxic, 3D-N) and 2D hypoxic (2D-H) culture as non-genetic CPP conditions that augment immunomodulatory and angiogenic fitness of MSC(AT). We measured multivariate panels of curated genes, soluble factors, and morphometric features for MSC(AT) cultured under varying CPP and licensing conditions, and we benchmarked these against two functional and therapeutically relevant anchor assays – in vitro monocyte/macrophage (MΦ) polarization and in vitro angiogenesis. Our results showed that varying CPP conditions was the primary driver of MSC(AT) immunomodulatory fitness; 3D-N conditions induced greater MSC(AT)-mediated MΦ polarization toward inflammation-resolving subtypes. In contrast, donor heterogeneity was the primary driver of MSC(AT) angiogenic fitness. Our analysis further revealed panels of putative CQAs with minimum and maximum values that consisted of twenty MSC(AT) characteristics that informed immunomodulatory fitness ranges, and ten MSC(AT) characteristics that informed angiogenic fitness ranges. Interestingly, many of the putative CQAs consisted of angiogenic genes or soluble factors that were inversely correlated with immunomodulatory functions ( THBS1, CCN2, EDN1, PDGFA , VEGFA , EDIL3 , ANGPT1 , and ANG genes), and positively correlated to angiogenic functions (VEGF protein), respectively. We applied desirability analysis to empirically rank the putative CQAs for MSC(AT) under varying CPP conditions and donors to numerically identify the desirable CPP conditions or donors with maximal MSC(AT) immunomodulatory and/or angiogenic fitness. Taken together, our approach enabled combinatorial analysis of the matrix of multivariate readouts to provide putative quantitative CQAs that were sensitive to variations in select CPPs that enhance MSC immunomodulatory/angiogenic potency, and donor heterogeneity. These putative CQAs may be used to prospectively screen potent MSC(AT) donors or cell culture conditions to optimize for desired basal MSC(AT) immunomodulatory or angiogenic fitness." @default.
- W4310356612 created "2022-12-09" @default.
- W4310356612 creator A5015212635 @default.
- W4310356612 creator A5034862467 @default.
- W4310356612 creator A5053024715 @default.
- W4310356612 creator A5088099380 @default.
- W4310356612 date "2022-11-30" @default.
- W4310356612 modified "2023-10-18" @default.
- W4310356612 title "Putative critical quality attribute matrix identifies mesenchymal stromal cells with potent immunomodulatory and angiogenic “fitness” ranges in response to culture process parameters" @default.
- W4310356612 cites W1968098666 @default.
- W4310356612 cites W1981778231 @default.
- W4310356612 cites W1997168440 @default.
- W4310356612 cites W2020541351 @default.
- W4310356612 cites W2025371271 @default.
- W4310356612 cites W2028702444 @default.
- W4310356612 cites W2030673574 @default.
- W4310356612 cites W2033298169 @default.
- W4310356612 cites W2034706779 @default.
- W4310356612 cites W2035922700 @default.
- W4310356612 cites W2043060398 @default.
- W4310356612 cites W2063601357 @default.
- W4310356612 cites W2070116140 @default.
- W4310356612 cites W2083156208 @default.
- W4310356612 cites W2086316164 @default.
- W4310356612 cites W2090200028 @default.
- W4310356612 cites W2098682275 @default.
- W4310356612 cites W2099540110 @default.
- W4310356612 cites W2102330961 @default.
- W4310356612 cites W2121752173 @default.
- W4310356612 cites W2134827504 @default.
- W4310356612 cites W2158819036 @default.
- W4310356612 cites W2197331811 @default.
- W4310356612 cites W2201248084 @default.
- W4310356612 cites W2256958843 @default.
- W4310356612 cites W2261791173 @default.
- W4310356612 cites W2516598029 @default.
- W4310356612 cites W2560634292 @default.
- W4310356612 cites W2592283567 @default.
- W4310356612 cites W2592858278 @default.
- W4310356612 cites W2609209689 @default.
- W4310356612 cites W2617468210 @default.
- W4310356612 cites W2655245291 @default.
- W4310356612 cites W2752182671 @default.
- W4310356612 cites W2769010773 @default.
- W4310356612 cites W2789704095 @default.
- W4310356612 cites W2790281915 @default.
- W4310356612 cites W2791327347 @default.
- W4310356612 cites W2792972333 @default.
- W4310356612 cites W2799323675 @default.
- W4310356612 cites W2805892376 @default.
- W4310356612 cites W2905083850 @default.
- W4310356612 cites W2911567764 @default.
- W4310356612 cites W2914373166 @default.
- W4310356612 cites W2917826173 @default.
- W4310356612 cites W2939203249 @default.
- W4310356612 cites W2944351909 @default.
- W4310356612 cites W2946059227 @default.
- W4310356612 cites W2946584140 @default.
- W4310356612 cites W2946717344 @default.
- W4310356612 cites W2964844776 @default.
- W4310356612 cites W2973068260 @default.
- W4310356612 cites W2991416247 @default.
- W4310356612 cites W3005835522 @default.
- W4310356612 cites W3042689819 @default.
- W4310356612 cites W3126282730 @default.
- W4310356612 cites W3133974442 @default.
- W4310356612 cites W3135534096 @default.
- W4310356612 cites W3145796195 @default.
- W4310356612 cites W3203882066 @default.
- W4310356612 cites W3209955082 @default.
- W4310356612 cites W3210105295 @default.
- W4310356612 cites W4224323983 @default.
- W4310356612 cites W4285727907 @default.
- W4310356612 cites W4288035492 @default.
- W4310356612 doi "https://doi.org/10.3389/fimmu.2022.972095" @default.
- W4310356612 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36532069" @default.
- W4310356612 hasPublicationYear "2022" @default.
- W4310356612 type Work @default.
- W4310356612 citedByCount "4" @default.
- W4310356612 countsByYear W43103566122023 @default.
- W4310356612 crossrefType "journal-article" @default.
- W4310356612 hasAuthorship W4310356612A5015212635 @default.
- W4310356612 hasAuthorship W4310356612A5034862467 @default.
- W4310356612 hasAuthorship W4310356612A5053024715 @default.
- W4310356612 hasAuthorship W4310356612A5088099380 @default.
- W4310356612 hasBestOaLocation W43103566121 @default.
- W4310356612 hasConcept C151730666 @default.
- W4310356612 hasConcept C16930146 @default.
- W4310356612 hasConcept C187530423 @default.
- W4310356612 hasConcept C198826908 @default.
- W4310356612 hasConcept C202751555 @default.
- W4310356612 hasConcept C203014093 @default.
- W4310356612 hasConcept C2780394083 @default.
- W4310356612 hasConcept C2780449318 @default.
- W4310356612 hasConcept C502942594 @default.
- W4310356612 hasConcept C54355233 @default.
- W4310356612 hasConcept C70721500 @default.
- W4310356612 hasConcept C86803240 @default.
- W4310356612 hasConcept C95444343 @default.
- W4310356612 hasConceptScore W4310356612C151730666 @default.