Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310359138> ?p ?o ?g. }
- W4310359138 endingPage "105646" @default.
- W4310359138 startingPage "105646" @default.
- W4310359138 abstract "The use of monolithic biosensors is increasingly popular in fundamental biological studies. Rapid advances in nanophotonic biosensors are leading to lab-on-a-chip platforms. In this paper we propose a method to use artificial neural networks (ANNs) to predict the output electrical signal of biosensor. Multilayer perceptron model is developed by assuming electrical current as outputs, and the refractive index of biosamples, central wavelength (λ) and full width half maximum (FWHM) of input light source as inputs. A comparative approach was applied between finite-difference time-domain (FDTD) method and ANN results to evaluate the biosensor’s ANN model. Results showed that the ANN design with topology of (3 5 4 4 6 21) can predict the output accurately based on the value of mean square error (MSE) about 2.9 × 10−8 as evaluation parameter. It was shown that the developed ANN model can approximate the outcome to high precision with only a small sampling of the data. Using the developed model, pre-optimization was run to find the optimum condition for electrical sensitivity and responsivity of the device. We found that the light source with central wavelength of 735 nm and FWHM of 70 nm can simultaneously satisfy the optimum conditions for sensitivity and responsivity." @default.
- W4310359138 created "2022-12-09" @default.
- W4310359138 creator A5011339804 @default.
- W4310359138 creator A5028054997 @default.
- W4310359138 creator A5050429321 @default.
- W4310359138 date "2023-02-01" @default.
- W4310359138 modified "2023-09-26" @default.
- W4310359138 title "Artificial intelligence-aided nanoplasmonic biosensor modeling" @default.
- W4310359138 cites W1990148718 @default.
- W4310359138 cites W2064905301 @default.
- W4310359138 cites W2111723518 @default.
- W4310359138 cites W2116119284 @default.
- W4310359138 cites W2158581396 @default.
- W4310359138 cites W2262247195 @default.
- W4310359138 cites W2610305572 @default.
- W4310359138 cites W2766162919 @default.
- W4310359138 cites W2803760365 @default.
- W4310359138 cites W2807593075 @default.
- W4310359138 cites W2895763047 @default.
- W4310359138 cites W2904477682 @default.
- W4310359138 cites W2971939492 @default.
- W4310359138 cites W2986975783 @default.
- W4310359138 cites W2988079113 @default.
- W4310359138 cites W2996308334 @default.
- W4310359138 cites W2996635091 @default.
- W4310359138 cites W3001975036 @default.
- W4310359138 cites W3003282372 @default.
- W4310359138 cites W3010953750 @default.
- W4310359138 cites W3037126225 @default.
- W4310359138 cites W3038052564 @default.
- W4310359138 cites W3048785337 @default.
- W4310359138 cites W3106419924 @default.
- W4310359138 cites W3109495579 @default.
- W4310359138 cites W3112457979 @default.
- W4310359138 cites W3121363369 @default.
- W4310359138 cites W3154539374 @default.
- W4310359138 cites W3212164449 @default.
- W4310359138 cites W4206116476 @default.
- W4310359138 cites W4212808371 @default.
- W4310359138 cites W4224075377 @default.
- W4310359138 cites W4226083042 @default.
- W4310359138 cites W2967029205 @default.
- W4310359138 doi "https://doi.org/10.1016/j.engappai.2022.105646" @default.
- W4310359138 hasPublicationYear "2023" @default.
- W4310359138 type Work @default.
- W4310359138 citedByCount "0" @default.
- W4310359138 crossrefType "journal-article" @default.
- W4310359138 hasAuthorship W4310359138A5011339804 @default.
- W4310359138 hasAuthorship W4310359138A5028054997 @default.
- W4310359138 hasAuthorship W4310359138A5050429321 @default.
- W4310359138 hasConcept C105795698 @default.
- W4310359138 hasConcept C11413529 @default.
- W4310359138 hasConcept C120665830 @default.
- W4310359138 hasConcept C121332964 @default.
- W4310359138 hasConcept C127413603 @default.
- W4310359138 hasConcept C139945424 @default.
- W4310359138 hasConcept C154945302 @default.
- W4310359138 hasConcept C160756335 @default.
- W4310359138 hasConcept C171250308 @default.
- W4310359138 hasConcept C178889773 @default.
- W4310359138 hasConcept C179717631 @default.
- W4310359138 hasConcept C184880428 @default.
- W4310359138 hasConcept C192562407 @default.
- W4310359138 hasConcept C21200559 @default.
- W4310359138 hasConcept C24326235 @default.
- W4310359138 hasConcept C33923547 @default.
- W4310359138 hasConcept C41008148 @default.
- W4310359138 hasConcept C50644808 @default.
- W4310359138 hasConcept C76155785 @default.
- W4310359138 hasConcept C94915269 @default.
- W4310359138 hasConceptScore W4310359138C105795698 @default.
- W4310359138 hasConceptScore W4310359138C11413529 @default.
- W4310359138 hasConceptScore W4310359138C120665830 @default.
- W4310359138 hasConceptScore W4310359138C121332964 @default.
- W4310359138 hasConceptScore W4310359138C127413603 @default.
- W4310359138 hasConceptScore W4310359138C139945424 @default.
- W4310359138 hasConceptScore W4310359138C154945302 @default.
- W4310359138 hasConceptScore W4310359138C160756335 @default.
- W4310359138 hasConceptScore W4310359138C171250308 @default.
- W4310359138 hasConceptScore W4310359138C178889773 @default.
- W4310359138 hasConceptScore W4310359138C179717631 @default.
- W4310359138 hasConceptScore W4310359138C184880428 @default.
- W4310359138 hasConceptScore W4310359138C192562407 @default.
- W4310359138 hasConceptScore W4310359138C21200559 @default.
- W4310359138 hasConceptScore W4310359138C24326235 @default.
- W4310359138 hasConceptScore W4310359138C33923547 @default.
- W4310359138 hasConceptScore W4310359138C41008148 @default.
- W4310359138 hasConceptScore W4310359138C50644808 @default.
- W4310359138 hasConceptScore W4310359138C76155785 @default.
- W4310359138 hasConceptScore W4310359138C94915269 @default.
- W4310359138 hasLocation W43103591381 @default.
- W4310359138 hasOpenAccess W4310359138 @default.
- W4310359138 hasPrimaryLocation W43103591381 @default.
- W4310359138 hasRelatedWork W1489969923 @default.
- W4310359138 hasRelatedWork W2749461815 @default.
- W4310359138 hasRelatedWork W2766830649 @default.
- W4310359138 hasRelatedWork W2797282764 @default.
- W4310359138 hasRelatedWork W2837262373 @default.