Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310362706> ?p ?o ?g. }
- W4310362706 endingPage "13" @default.
- W4310362706 startingPage "1" @default.
- W4310362706 abstract "Developing an accurate pavement prediction model plays a dominant role in pavement M&R optimization. Despite employing different robust machine learning techniques to predict pavement conditions, these methods have some weaknesses in synchronising with exact optimization algorithms. The main contribution of this study is to propose a novel method for optimizing the pavement M&R plan with high accuracy. Contrary to conventional approaches, a robust prediction algorithm, Random Forest Regression (RFR), is applied to predict the pavement International Roughness Index (IRI). In addition, Multiple Linear Regression (MLR) is employed to assess the performance of the proposed technique in terms of IRI prediction accuracy. Whale Optimization Algorithm (WOA), as a powerful metaheuristic optimization algorithm, is utilised to obtain the optimal solution to the pavement M&R optimization problem. RFR is run as an internal part of the WOA in the introduced method. Furthermore, Genetic Algorithm (GA) is used to examine the performance of the proposed approach in finding the optimal solution. The RFR results conclude a more accurate prediction of IRI than MLR based on all machine learning performance indicators. Furthermore, the newly developed hybrid model significantly outperforms GA in finding the optimal and cost-effective solution to the M&R optimization problem." @default.
- W4310362706 created "2022-12-09" @default.
- W4310362706 creator A5013070159 @default.
- W4310362706 creator A5034102474 @default.
- W4310362706 creator A5057118393 @default.
- W4310362706 creator A5058232210 @default.
- W4310362706 creator A5083430998 @default.
- W4310362706 creator A5087259986 @default.
- W4310362706 date "2022-11-29" @default.
- W4310362706 modified "2023-10-03" @default.
- W4310362706 title "A newly developed hybrid method on pavement maintenance and rehabilitation optimization applying Whale Optimization Algorithm and random forest regression" @default.
- W4310362706 cites W1560696040 @default.
- W4310362706 cites W1979134284 @default.
- W4310362706 cites W1981456570 @default.
- W4310362706 cites W2037950610 @default.
- W4310362706 cites W2069275759 @default.
- W4310362706 cites W2290883490 @default.
- W4310362706 cites W2406283676 @default.
- W4310362706 cites W2464789202 @default.
- W4310362706 cites W2524511781 @default.
- W4310362706 cites W2547032137 @default.
- W4310362706 cites W2567289819 @default.
- W4310362706 cites W2568401061 @default.
- W4310362706 cites W2596033302 @default.
- W4310362706 cites W2596943951 @default.
- W4310362706 cites W2728962837 @default.
- W4310362706 cites W2742490952 @default.
- W4310362706 cites W2760264309 @default.
- W4310362706 cites W2791817377 @default.
- W4310362706 cites W2800912817 @default.
- W4310362706 cites W2808414497 @default.
- W4310362706 cites W2890167402 @default.
- W4310362706 cites W2895147187 @default.
- W4310362706 cites W2899146965 @default.
- W4310362706 cites W2899680555 @default.
- W4310362706 cites W2904928304 @default.
- W4310362706 cites W2911964244 @default.
- W4310362706 cites W2922052702 @default.
- W4310362706 cites W2922096023 @default.
- W4310362706 cites W2922673383 @default.
- W4310362706 cites W2957387895 @default.
- W4310362706 cites W2968301653 @default.
- W4310362706 cites W2980215946 @default.
- W4310362706 cites W3003017134 @default.
- W4310362706 cites W3004425883 @default.
- W4310362706 cites W3008927312 @default.
- W4310362706 cites W3015342764 @default.
- W4310362706 cites W3019139882 @default.
- W4310362706 cites W3043788212 @default.
- W4310362706 cites W3047828035 @default.
- W4310362706 cites W3112099171 @default.
- W4310362706 cites W3113214534 @default.
- W4310362706 cites W3114791422 @default.
- W4310362706 cites W3116925465 @default.
- W4310362706 cites W3125107672 @default.
- W4310362706 cites W3126873283 @default.
- W4310362706 cites W3128706982 @default.
- W4310362706 cites W3135908761 @default.
- W4310362706 cites W3169181567 @default.
- W4310362706 cites W3196202791 @default.
- W4310362706 cites W3202200510 @default.
- W4310362706 cites W3211731135 @default.
- W4310362706 cites W4200177682 @default.
- W4310362706 cites W4213027630 @default.
- W4310362706 cites W4214651867 @default.
- W4310362706 cites W4220674787 @default.
- W4310362706 cites W4220799002 @default.
- W4310362706 cites W4237806684 @default.
- W4310362706 cites W4284892780 @default.
- W4310362706 cites W4285387998 @default.
- W4310362706 doi "https://doi.org/10.1080/10298436.2022.2147672" @default.
- W4310362706 hasPublicationYear "2022" @default.
- W4310362706 type Work @default.
- W4310362706 citedByCount "10" @default.
- W4310362706 countsByYear W43103627062022 @default.
- W4310362706 countsByYear W43103627062023 @default.
- W4310362706 crossrefType "journal-article" @default.
- W4310362706 hasAuthorship W4310362706A5013070159 @default.
- W4310362706 hasAuthorship W4310362706A5034102474 @default.
- W4310362706 hasAuthorship W4310362706A5057118393 @default.
- W4310362706 hasAuthorship W4310362706A5058232210 @default.
- W4310362706 hasAuthorship W4310362706A5083430998 @default.
- W4310362706 hasAuthorship W4310362706A5087259986 @default.
- W4310362706 hasConcept C105795698 @default.
- W4310362706 hasConcept C109718341 @default.
- W4310362706 hasConcept C11413529 @default.
- W4310362706 hasConcept C119857082 @default.
- W4310362706 hasConcept C126255220 @default.
- W4310362706 hasConcept C127413603 @default.
- W4310362706 hasConcept C169258074 @default.
- W4310362706 hasConcept C2781212230 @default.
- W4310362706 hasConcept C33923547 @default.
- W4310362706 hasConcept C41008148 @default.
- W4310362706 hasConcept C71039073 @default.
- W4310362706 hasConcept C78519656 @default.
- W4310362706 hasConcept C83546350 @default.
- W4310362706 hasConceptScore W4310362706C105795698 @default.
- W4310362706 hasConceptScore W4310362706C109718341 @default.