Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310362879> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4310362879 endingPage "23" @default.
- W4310362879 startingPage "1" @default.
- W4310362879 abstract "Purpose Demand foresting significantly impacts supply chain (SC) design and recovery planning. The more accurate the demand forecast, the better the recovery plan and the more resilient the SC. Given the paucity of research about machine learning (ML) applications and the pharmaceutical industry’s need for disruptive techniques, this study aims to investigate the applicability and effect of ML algorithms on demand forecasting. More specifically, the study identifies machine learning algorithms applicable to demand forecasting and assess the forecasting accuracy of using ML in the pharmaceutical SC. Design/methodology/approach This research used a single-case explanatory methodology. The exploratory approach examined the study’s objective and the acquisition of information technology impact. In this research, three experimental designs were carried out to test training data partitioning, apply ML algorithms and test different ranges of exclusion factors. The Konstanz Information Miner platform was used in this research. Findings Based on the analysis, this study could show that the most accurate training data partition was 80%, with random forest and simple tree outperforming other algorithms regarding demand forecasting accuracy. The improvement in demand forecasting accuracy ranged from 10% to 41%. Research limitations/implications This study provides practical and theoretical insights into the importance of applying disruptive techniques such as ML to improve the resilience of the pharmaceutical supply design in such a disruptive time. Originality/value The finding of this research contributes to the limited knowledge about ML applications in demand forecasting. This is manifested in the knowledge advancement about the different ML algorithms applicable in demand forecasting and their effectiveness. Besides, the study at hand offers guidance for future research in expanding and analyzing the applicability and effectiveness of ML algorithms in the different sectors of the SC." @default.
- W4310362879 created "2022-12-09" @default.
- W4310362879 creator A5026309772 @default.
- W4310362879 creator A5069835551 @default.
- W4310362879 date "2022-11-30" @default.
- W4310362879 modified "2023-10-14" @default.
- W4310362879 title "Demand forecasting accuracy in the pharmaceutical supply chain: a machine learning approach" @default.
- W4310362879 cites W1490535108 @default.
- W4310362879 cites W1966314467 @default.
- W4310362879 cites W1977698057 @default.
- W4310362879 cites W1979919415 @default.
- W4310362879 cites W1982909320 @default.
- W4310362879 cites W1983531188 @default.
- W4310362879 cites W1993939498 @default.
- W4310362879 cites W2010836357 @default.
- W4310362879 cites W2012478163 @default.
- W4310362879 cites W2013494753 @default.
- W4310362879 cites W2016210396 @default.
- W4310362879 cites W2038175654 @default.
- W4310362879 cites W2040182676 @default.
- W4310362879 cites W2068842805 @default.
- W4310362879 cites W2069379686 @default.
- W4310362879 cites W2079672461 @default.
- W4310362879 cites W2085747673 @default.
- W4310362879 cites W2089200043 @default.
- W4310362879 cites W2091191840 @default.
- W4310362879 cites W2098929428 @default.
- W4310362879 cites W2135089766 @default.
- W4310362879 cites W2146574767 @default.
- W4310362879 cites W2150783679 @default.
- W4310362879 cites W2155911304 @default.
- W4310362879 cites W2158377998 @default.
- W4310362879 cites W2328523650 @default.
- W4310362879 cites W2514553868 @default.
- W4310362879 cites W2556653532 @default.
- W4310362879 cites W2754029504 @default.
- W4310362879 cites W2793350103 @default.
- W4310362879 cites W2794778778 @default.
- W4310362879 cites W2800718903 @default.
- W4310362879 cites W2884741544 @default.
- W4310362879 cites W2894999754 @default.
- W4310362879 cites W2904815033 @default.
- W4310362879 cites W2921438067 @default.
- W4310362879 cites W2944114041 @default.
- W4310362879 cites W2973026551 @default.
- W4310362879 cites W3000393559 @default.
- W4310362879 cites W3008696509 @default.
- W4310362879 cites W3021785580 @default.
- W4310362879 cites W3026226282 @default.
- W4310362879 cites W4229076765 @default.
- W4310362879 cites W4232235849 @default.
- W4310362879 doi "https://doi.org/10.1108/ijphm-05-2021-0056" @default.
- W4310362879 hasPublicationYear "2022" @default.
- W4310362879 type Work @default.
- W4310362879 citedByCount "0" @default.
- W4310362879 crossrefType "journal-article" @default.
- W4310362879 hasAuthorship W4310362879A5026309772 @default.
- W4310362879 hasAuthorship W4310362879A5069835551 @default.
- W4310362879 hasConcept C108713360 @default.
- W4310362879 hasConcept C119857082 @default.
- W4310362879 hasConcept C127413603 @default.
- W4310362879 hasConcept C144133560 @default.
- W4310362879 hasConcept C154945302 @default.
- W4310362879 hasConcept C162853370 @default.
- W4310362879 hasConcept C193809577 @default.
- W4310362879 hasConcept C41008148 @default.
- W4310362879 hasConcept C42475967 @default.
- W4310362879 hasConceptScore W4310362879C108713360 @default.
- W4310362879 hasConceptScore W4310362879C119857082 @default.
- W4310362879 hasConceptScore W4310362879C127413603 @default.
- W4310362879 hasConceptScore W4310362879C144133560 @default.
- W4310362879 hasConceptScore W4310362879C154945302 @default.
- W4310362879 hasConceptScore W4310362879C162853370 @default.
- W4310362879 hasConceptScore W4310362879C193809577 @default.
- W4310362879 hasConceptScore W4310362879C41008148 @default.
- W4310362879 hasConceptScore W4310362879C42475967 @default.
- W4310362879 hasIssue "1" @default.
- W4310362879 hasLocation W43103628791 @default.
- W4310362879 hasOpenAccess W4310362879 @default.
- W4310362879 hasPrimaryLocation W43103628791 @default.
- W4310362879 hasRelatedWork W1998197049 @default.
- W4310362879 hasRelatedWork W2125066969 @default.
- W4310362879 hasRelatedWork W2592649894 @default.
- W4310362879 hasRelatedWork W2961085424 @default.
- W4310362879 hasRelatedWork W3119207683 @default.
- W4310362879 hasRelatedWork W4286629047 @default.
- W4310362879 hasRelatedWork W4306321456 @default.
- W4310362879 hasRelatedWork W4306674287 @default.
- W4310362879 hasRelatedWork W4313183085 @default.
- W4310362879 hasRelatedWork W4224009465 @default.
- W4310362879 hasVolume "17" @default.
- W4310362879 isParatext "false" @default.
- W4310362879 isRetracted "false" @default.
- W4310362879 workType "article" @default.