Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310363145> ?p ?o ?g. }
- W4310363145 abstract "Abstract Background Acute pancreatitis (AP) with critical illness is linked to increased morbidity and mortality. Current risk scores to identify high-risk AP patients have certain limitations. Objective To develop and validate a machine learning tool within 48 h after admission for predicting which patients with AP will develop critical illness based on ubiquitously available clinical, laboratory, and radiologic variables. Methods 5460 AP patients were enrolled. Clinical, laboratory, and imaging variables were collected within 48 h after hospital admission. Least Absolute Shrinkage Selection Operator with bootstrap method was employed to select the most informative variables. Five different machine learning models were constructed to predictive likelihood of critical illness, and the optimal model (APCU) was selected. External cohort was used to validate APCU. APCU and other risk scores were compared using multivariate analysis. Models were evaluated by area under the curve (AUC). The decision curve analysis was employed to evaluate the standardized net benefit. Results Xgboost was constructed and selected as APCU, involving age, comorbid disease, mental status, pulmonary infiltrates, procalcitonin (PCT), neutrophil percentage (Neu%), ALT/AST, ratio of albumin and globulin, cholinesterase, Urea, Glu, AST and serum total cholesterol. The APCU performed excellently in discriminating AP risk in internal cohort (AUC = 0.95) and external cohort (AUC = 0.873). The APCU was significant for biliogenic AP (OR = 4.25 [2.08–8.72], P < 0.001), alcoholic AP (OR = 3.60 [1.67–7.72], P = 0.001), hyperlipidemic AP (OR = 2.63 [1.28–5.37], P = 0.008) and tumor AP (OR = 4.57 [2.14–9.72], P < 0.001). APCU yielded the highest clinical net benefit, comparatively. Conclusion Machine learning tool based on ubiquitously available clinical variables accurately predicts the development of AP, optimizing the management of AP." @default.
- W4310363145 created "2022-12-09" @default.
- W4310363145 creator A5000520103 @default.
- W4310363145 creator A5002310102 @default.
- W4310363145 creator A5024680462 @default.
- W4310363145 creator A5046214153 @default.
- W4310363145 creator A5051434566 @default.
- W4310363145 creator A5071418632 @default.
- W4310363145 creator A5090522460 @default.
- W4310363145 date "2022-11-29" @default.
- W4310363145 modified "2023-10-01" @default.
- W4310363145 title "Machine learning model identifies aggressive acute pancreatitis within 48 h of admission: a large retrospective study" @default.
- W4310363145 cites W1449306147 @default.
- W4310363145 cites W1509320261 @default.
- W4310363145 cites W1544299356 @default.
- W4310363145 cites W1963994666 @default.
- W4310363145 cites W1968547177 @default.
- W4310363145 cites W1972516036 @default.
- W4310363145 cites W1987355065 @default.
- W4310363145 cites W1994682257 @default.
- W4310363145 cites W1998304937 @default.
- W4310363145 cites W2008643227 @default.
- W4310363145 cites W2027576789 @default.
- W4310363145 cites W2045030989 @default.
- W4310363145 cites W2058328949 @default.
- W4310363145 cites W2059028578 @default.
- W4310363145 cites W2079028854 @default.
- W4310363145 cites W2085208748 @default.
- W4310363145 cites W2099716924 @default.
- W4310363145 cites W2100465882 @default.
- W4310363145 cites W2102941144 @default.
- W4310363145 cites W2124537809 @default.
- W4310363145 cites W2131060185 @default.
- W4310363145 cites W2135964439 @default.
- W4310363145 cites W2139648891 @default.
- W4310363145 cites W2147227228 @default.
- W4310363145 cites W2325705591 @default.
- W4310363145 cites W2599527603 @default.
- W4310363145 cites W2786840493 @default.
- W4310363145 cites W2919604151 @default.
- W4310363145 cites W2954691525 @default.
- W4310363145 cites W2980443998 @default.
- W4310363145 cites W3009622486 @default.
- W4310363145 cites W3011037969 @default.
- W4310363145 cites W3093100699 @default.
- W4310363145 cites W3102476541 @default.
- W4310363145 cites W3111698685 @default.
- W4310363145 cites W3127382155 @default.
- W4310363145 cites W3135134307 @default.
- W4310363145 cites W3206201152 @default.
- W4310363145 cites W4206247747 @default.
- W4310363145 cites W4211022384 @default.
- W4310363145 cites W4223435340 @default.
- W4310363145 cites W4224046409 @default.
- W4310363145 cites W4280639694 @default.
- W4310363145 cites W4301177039 @default.
- W4310363145 cites W4301424780 @default.
- W4310363145 doi "https://doi.org/10.1186/s12911-022-02066-3" @default.
- W4310363145 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36447180" @default.
- W4310363145 hasPublicationYear "2022" @default.
- W4310363145 type Work @default.
- W4310363145 citedByCount "2" @default.
- W4310363145 countsByYear W43103631452023 @default.
- W4310363145 crossrefType "journal-article" @default.
- W4310363145 hasAuthorship W4310363145A5000520103 @default.
- W4310363145 hasAuthorship W4310363145A5002310102 @default.
- W4310363145 hasAuthorship W4310363145A5024680462 @default.
- W4310363145 hasAuthorship W4310363145A5046214153 @default.
- W4310363145 hasAuthorship W4310363145A5051434566 @default.
- W4310363145 hasAuthorship W4310363145A5071418632 @default.
- W4310363145 hasAuthorship W4310363145A5090522460 @default.
- W4310363145 hasBestOaLocation W43103631451 @default.
- W4310363145 hasConcept C10936531 @default.
- W4310363145 hasConcept C119857082 @default.
- W4310363145 hasConcept C126322002 @default.
- W4310363145 hasConcept C167135981 @default.
- W4310363145 hasConcept C2776009029 @default.
- W4310363145 hasConcept C2776670229 @default.
- W4310363145 hasConcept C2778384902 @default.
- W4310363145 hasConcept C41008148 @default.
- W4310363145 hasConcept C58471807 @default.
- W4310363145 hasConcept C71924100 @default.
- W4310363145 hasConcept C72563966 @default.
- W4310363145 hasConcept C76318530 @default.
- W4310363145 hasConceptScore W4310363145C10936531 @default.
- W4310363145 hasConceptScore W4310363145C119857082 @default.
- W4310363145 hasConceptScore W4310363145C126322002 @default.
- W4310363145 hasConceptScore W4310363145C167135981 @default.
- W4310363145 hasConceptScore W4310363145C2776009029 @default.
- W4310363145 hasConceptScore W4310363145C2776670229 @default.
- W4310363145 hasConceptScore W4310363145C2778384902 @default.
- W4310363145 hasConceptScore W4310363145C41008148 @default.
- W4310363145 hasConceptScore W4310363145C58471807 @default.
- W4310363145 hasConceptScore W4310363145C71924100 @default.
- W4310363145 hasConceptScore W4310363145C72563966 @default.
- W4310363145 hasConceptScore W4310363145C76318530 @default.
- W4310363145 hasIssue "1" @default.
- W4310363145 hasLocation W43103631451 @default.
- W4310363145 hasLocation W43103631452 @default.
- W4310363145 hasLocation W43103631453 @default.