Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310367455> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4310367455 endingPage "101270" @default.
- W4310367455 startingPage "101270" @default.
- W4310367455 abstract "The evaluation of clustering algorithms can involve running them on a variety of benchmark problems, and comparing their outputs to the reference, ground-truth groupings provided by experts. Unfortunately, many research papers and graduate theses consider only a small number of datasets. Also, the fact that there can be many equally valid ways to cluster a given problem set is rarely taken into account. In order to overcome these limitations, we have developed a framework whose aim is to introduce a consistent methodology for testing clustering algorithms. Furthermore, we have aggregated, polished, and standardised many clustering benchmark dataset collections referred to across the machine learning and data mining literature, and included new datasets of different dimensionalities, sizes, and cluster types. An interactive datasets explorer, the documentation of the Python API, a description of the ways to interact with the framework from other programming languages such as R or MATLAB, and other details are all provided at <https://clustering-benchmarks.gagolewski.com>." @default.
- W4310367455 created "2022-12-09" @default.
- W4310367455 creator A5076546160 @default.
- W4310367455 date "2022-12-01" @default.
- W4310367455 modified "2023-10-17" @default.
- W4310367455 title "A framework for benchmarking clustering algorithms" @default.
- W4310367455 cites W1888898201 @default.
- W4310367455 cites W1971123384 @default.
- W4310367455 cites W1975152892 @default.
- W4310367455 cites W1985059878 @default.
- W4310367455 cites W1985702987 @default.
- W4310367455 cites W2108323654 @default.
- W4310367455 cites W2130473611 @default.
- W4310367455 cites W2135395088 @default.
- W4310367455 cites W2141585940 @default.
- W4310367455 cites W2154532634 @default.
- W4310367455 cites W2323180518 @default.
- W4310367455 cites W2383142539 @default.
- W4310367455 cites W2601243251 @default.
- W4310367455 cites W2884586244 @default.
- W4310367455 cites W2981001919 @default.
- W4310367455 cites W3017433385 @default.
- W4310367455 cites W3110895566 @default.
- W4310367455 cites W3170292950 @default.
- W4310367455 cites W3182629451 @default.
- W4310367455 cites W3193122623 @default.
- W4310367455 cites W3202645141 @default.
- W4310367455 cites W4220855543 @default.
- W4310367455 cites W83294241 @default.
- W4310367455 doi "https://doi.org/10.1016/j.softx.2022.101270" @default.
- W4310367455 hasPublicationYear "2022" @default.
- W4310367455 type Work @default.
- W4310367455 citedByCount "2" @default.
- W4310367455 countsByYear W43103674552023 @default.
- W4310367455 crossrefType "journal-article" @default.
- W4310367455 hasAuthorship W4310367455A5076546160 @default.
- W4310367455 hasBestOaLocation W43103674551 @default.
- W4310367455 hasConcept C119857082 @default.
- W4310367455 hasConcept C124101348 @default.
- W4310367455 hasConcept C13280743 @default.
- W4310367455 hasConcept C144133560 @default.
- W4310367455 hasConcept C154945302 @default.
- W4310367455 hasConcept C162853370 @default.
- W4310367455 hasConcept C177264268 @default.
- W4310367455 hasConcept C185798385 @default.
- W4310367455 hasConcept C199360897 @default.
- W4310367455 hasConcept C205649164 @default.
- W4310367455 hasConcept C41008148 @default.
- W4310367455 hasConcept C519991488 @default.
- W4310367455 hasConcept C56666940 @default.
- W4310367455 hasConcept C73555534 @default.
- W4310367455 hasConcept C86251818 @default.
- W4310367455 hasConceptScore W4310367455C119857082 @default.
- W4310367455 hasConceptScore W4310367455C124101348 @default.
- W4310367455 hasConceptScore W4310367455C13280743 @default.
- W4310367455 hasConceptScore W4310367455C144133560 @default.
- W4310367455 hasConceptScore W4310367455C154945302 @default.
- W4310367455 hasConceptScore W4310367455C162853370 @default.
- W4310367455 hasConceptScore W4310367455C177264268 @default.
- W4310367455 hasConceptScore W4310367455C185798385 @default.
- W4310367455 hasConceptScore W4310367455C199360897 @default.
- W4310367455 hasConceptScore W4310367455C205649164 @default.
- W4310367455 hasConceptScore W4310367455C41008148 @default.
- W4310367455 hasConceptScore W4310367455C519991488 @default.
- W4310367455 hasConceptScore W4310367455C56666940 @default.
- W4310367455 hasConceptScore W4310367455C73555534 @default.
- W4310367455 hasConceptScore W4310367455C86251818 @default.
- W4310367455 hasFunder F4320334704 @default.
- W4310367455 hasLocation W43103674551 @default.
- W4310367455 hasLocation W43103674552 @default.
- W4310367455 hasLocation W43103674553 @default.
- W4310367455 hasLocation W43103674554 @default.
- W4310367455 hasOpenAccess W4310367455 @default.
- W4310367455 hasPrimaryLocation W43103674551 @default.
- W4310367455 hasRelatedWork W2593649365 @default.
- W4310367455 hasRelatedWork W2896810366 @default.
- W4310367455 hasRelatedWork W2950577464 @default.
- W4310367455 hasRelatedWork W3170111948 @default.
- W4310367455 hasRelatedWork W4289366676 @default.
- W4310367455 hasRelatedWork W4300037694 @default.
- W4310367455 hasRelatedWork W4302612983 @default.
- W4310367455 hasRelatedWork W4381245711 @default.
- W4310367455 hasRelatedWork W4385825481 @default.
- W4310367455 hasRelatedWork W4287077734 @default.
- W4310367455 hasVolume "20" @default.
- W4310367455 isParatext "false" @default.
- W4310367455 isRetracted "false" @default.
- W4310367455 workType "article" @default.