Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310367938> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4310367938 endingPage "25" @default.
- W4310367938 startingPage "1" @default.
- W4310367938 abstract "Autonomous driving is self-driving without the intervention of a human driver. A self-driving autonomous vehicle is designed with the help of high-technology sensors that can sense the traffic and traffic signals in the surroundings and move accordingly. It becomes necessary for a self-driving vehicle to take a right decision at the right time in an uncertain traffic environment. Any unusual anomalous activity or unexpected obstacle that could not be detected by an autonomous vehicle can lead to a road accident. For decision making in autonomous vehicles, very precisely designed and optimized programming software are developed and intensively trained to install in vehicle's computer system. But in spite of these trained software some of the anomalous activity could become a hindrance to detect promptly during self-driving. Therefore, automatic detection and recognition of anomalies in autonomous vehicles is critical to a safe drive. In this chapter we discuss and propos deep learning method for anonymous activity detection of other vehicles that can be danger for safe driving in an autonomous vehicle. The present chapter focuses on various conditions and possible anomalies that should be known to handle while developing software for autonomous vehicles using deep learning models. A variety of deep learning models were tested to detect abnormalities, and we discovered that deep learning models can detect anomalies in real time. We have also observed that incremental development in YOLO (You Only Look Once) make it more accurate and agile in object detection. We suggest that anomalies should be detected in real time and YOLO can play a vital role in anomalous activity." @default.
- W4310367938 created "2022-12-09" @default.
- W4310367938 creator A5030102145 @default.
- W4310367938 creator A5058123173 @default.
- W4310367938 creator A5066406642 @default.
- W4310367938 date "2022-11-29" @default.
- W4310367938 modified "2023-09-26" @default.
- W4310367938 title "Anomalous Activity Detection Using Deep Learning Techniques in Autonomous Vehicles" @default.
- W4310367938 cites W2295628043 @default.
- W4310367938 cites W2515328799 @default.
- W4310367938 cites W2565354498 @default.
- W4310367938 cites W2582664605 @default.
- W4310367938 cites W2592386911 @default.
- W4310367938 cites W2789337632 @default.
- W4310367938 cites W2897476383 @default.
- W4310367938 cites W2945434604 @default.
- W4310367938 cites W2976915729 @default.
- W4310367938 cites W2982407733 @default.
- W4310367938 cites W2996852484 @default.
- W4310367938 cites W3026525412 @default.
- W4310367938 cites W3089391139 @default.
- W4310367938 cites W3101046066 @default.
- W4310367938 cites W3129776082 @default.
- W4310367938 cites W3175679924 @default.
- W4310367938 cites W4200369089 @default.
- W4310367938 cites W4200408075 @default.
- W4310367938 cites W4200533429 @default.
- W4310367938 doi "https://doi.org/10.1002/9781119871989.ch1" @default.
- W4310367938 hasPublicationYear "2022" @default.
- W4310367938 type Work @default.
- W4310367938 citedByCount "0" @default.
- W4310367938 crossrefType "other" @default.
- W4310367938 hasAuthorship W4310367938A5030102145 @default.
- W4310367938 hasAuthorship W4310367938A5058123173 @default.
- W4310367938 hasAuthorship W4310367938A5066406642 @default.
- W4310367938 hasConcept C108583219 @default.
- W4310367938 hasConcept C115903868 @default.
- W4310367938 hasConcept C136197465 @default.
- W4310367938 hasConcept C14185376 @default.
- W4310367938 hasConcept C153180895 @default.
- W4310367938 hasConcept C154945302 @default.
- W4310367938 hasConcept C17744445 @default.
- W4310367938 hasConcept C199360897 @default.
- W4310367938 hasConcept C199539241 @default.
- W4310367938 hasConcept C2776151529 @default.
- W4310367938 hasConcept C2776650193 @default.
- W4310367938 hasConcept C2777904410 @default.
- W4310367938 hasConcept C41008148 @default.
- W4310367938 hasConcept C79403827 @default.
- W4310367938 hasConceptScore W4310367938C108583219 @default.
- W4310367938 hasConceptScore W4310367938C115903868 @default.
- W4310367938 hasConceptScore W4310367938C136197465 @default.
- W4310367938 hasConceptScore W4310367938C14185376 @default.
- W4310367938 hasConceptScore W4310367938C153180895 @default.
- W4310367938 hasConceptScore W4310367938C154945302 @default.
- W4310367938 hasConceptScore W4310367938C17744445 @default.
- W4310367938 hasConceptScore W4310367938C199360897 @default.
- W4310367938 hasConceptScore W4310367938C199539241 @default.
- W4310367938 hasConceptScore W4310367938C2776151529 @default.
- W4310367938 hasConceptScore W4310367938C2776650193 @default.
- W4310367938 hasConceptScore W4310367938C2777904410 @default.
- W4310367938 hasConceptScore W4310367938C41008148 @default.
- W4310367938 hasConceptScore W4310367938C79403827 @default.
- W4310367938 hasLocation W43103679381 @default.
- W4310367938 hasOpenAccess W4310367938 @default.
- W4310367938 hasPrimaryLocation W43103679381 @default.
- W4310367938 hasRelatedWork W2883677709 @default.
- W4310367938 hasRelatedWork W2908939556 @default.
- W4310367938 hasRelatedWork W2970686063 @default.
- W4310367938 hasRelatedWork W3108032886 @default.
- W4310367938 hasRelatedWork W4281945544 @default.
- W4310367938 hasRelatedWork W4283529202 @default.
- W4310367938 hasRelatedWork W4285335027 @default.
- W4310367938 hasRelatedWork W4306664019 @default.
- W4310367938 hasRelatedWork W4311401716 @default.
- W4310367938 hasRelatedWork W4385695170 @default.
- W4310367938 isParatext "false" @default.
- W4310367938 isRetracted "false" @default.
- W4310367938 workType "other" @default.