Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310368834> ?p ?o ?g. }
- W4310368834 endingPage "101" @default.
- W4310368834 startingPage "75" @default.
- W4310368834 abstract "Understanding the causes and impacts of migration, as well as implementing policies aimed at providing certain services, requires estimating migration flows and forecasting future patterns. Over time, less study has been done on modeling migration flows than has been done on modeling other types of flows, such as commutes. One of the biggest hurdles to empirical analysis and theoretical developments in the modeling of migration flows has been a lack of data. Because a migration trip is far less frequent than a commute, it necessitates a longitudinal set of data for study. The data from a large mobile phone network is used in this chapter to infer migration trips and their distribution. Intra/inter-district migration flows, migration distance distribution, and origin-destination (O-D) movements are among the interesting properties of the inferred migration trips. The log-linear model, classic gravity model, and recently developed radiation model are investigated for migration trip distribution modeling, with distinct approaches applied in setting parameters for each model. As a result, among the different models, gravity and log-linear models with a direct distance (displacement) as a trip cost and district centroids as reference points perform the best. Among the radiation models, a model that considers district population is the best performing model, but not as good as the gravity and log-linear models. This chapter reflects the idea and thinking process of our original work by Phithakkitnukoon et al. (IEEE Access. 2022;10:23248–58; IEEE international conference on privacy, security, risk and trust and IEEE international conference on social computing (PASSAT/SocialCom 2011); 2011. p. 515–20), and Hankaew et al. (IEEE Access. 2019;7(1):164746–58)." @default.
- W4310368834 created "2022-12-09" @default.
- W4310368834 creator A5014802853 @default.
- W4310368834 date "2022-11-30" @default.
- W4310368834 modified "2023-09-26" @default.
- W4310368834 title "Inferring and Modeling Migration Flows Using Mobile Phone CDR Data" @default.
- W4310368834 cites W1516662375 @default.
- W4310368834 cites W1606702997 @default.
- W4310368834 cites W1726344143 @default.
- W4310368834 cites W1987197474 @default.
- W4310368834 cites W1987228002 @default.
- W4310368834 cites W1988400382 @default.
- W4310368834 cites W1990898695 @default.
- W4310368834 cites W1993383633 @default.
- W4310368834 cites W199749264 @default.
- W4310368834 cites W1998499756 @default.
- W4310368834 cites W2047254397 @default.
- W4310368834 cites W2056495296 @default.
- W4310368834 cites W2056897530 @default.
- W4310368834 cites W2062389694 @default.
- W4310368834 cites W2082031033 @default.
- W4310368834 cites W2090978188 @default.
- W4310368834 cites W2100378013 @default.
- W4310368834 cites W2107761673 @default.
- W4310368834 cites W2119073152 @default.
- W4310368834 cites W2122407203 @default.
- W4310368834 cites W2160843879 @default.
- W4310368834 cites W2327613052 @default.
- W4310368834 cites W2334591607 @default.
- W4310368834 cites W2495333748 @default.
- W4310368834 cites W2896610010 @default.
- W4310368834 cites W2908272686 @default.
- W4310368834 cites W2963028112 @default.
- W4310368834 cites W3124500038 @default.
- W4310368834 cites W630650518 @default.
- W4310368834 doi "https://doi.org/10.1007/978-981-19-6714-6_4" @default.
- W4310368834 hasPublicationYear "2022" @default.
- W4310368834 type Work @default.
- W4310368834 citedByCount "0" @default.
- W4310368834 crossrefType "book-chapter" @default.
- W4310368834 hasAuthorship W4310368834A5014802853 @default.
- W4310368834 hasConcept C110121322 @default.
- W4310368834 hasConcept C111919701 @default.
- W4310368834 hasConcept C127413603 @default.
- W4310368834 hasConcept C134306372 @default.
- W4310368834 hasConcept C138885662 @default.
- W4310368834 hasConcept C144024400 @default.
- W4310368834 hasConcept C144133560 @default.
- W4310368834 hasConcept C146599234 @default.
- W4310368834 hasConcept C149782125 @default.
- W4310368834 hasConcept C149923435 @default.
- W4310368834 hasConcept C154945302 @default.
- W4310368834 hasConcept C155202549 @default.
- W4310368834 hasConcept C157085824 @default.
- W4310368834 hasConcept C173608175 @default.
- W4310368834 hasConcept C205649164 @default.
- W4310368834 hasConcept C26271046 @default.
- W4310368834 hasConcept C2777421447 @default.
- W4310368834 hasConcept C2778707766 @default.
- W4310368834 hasConcept C2780031633 @default.
- W4310368834 hasConcept C2908647359 @default.
- W4310368834 hasConcept C33923547 @default.
- W4310368834 hasConcept C41008148 @default.
- W4310368834 hasConcept C41895202 @default.
- W4310368834 hasConcept C42475967 @default.
- W4310368834 hasConcept C76155785 @default.
- W4310368834 hasConcept C87889798 @default.
- W4310368834 hasConcept C98045186 @default.
- W4310368834 hasConceptScore W4310368834C110121322 @default.
- W4310368834 hasConceptScore W4310368834C111919701 @default.
- W4310368834 hasConceptScore W4310368834C127413603 @default.
- W4310368834 hasConceptScore W4310368834C134306372 @default.
- W4310368834 hasConceptScore W4310368834C138885662 @default.
- W4310368834 hasConceptScore W4310368834C144024400 @default.
- W4310368834 hasConceptScore W4310368834C144133560 @default.
- W4310368834 hasConceptScore W4310368834C146599234 @default.
- W4310368834 hasConceptScore W4310368834C149782125 @default.
- W4310368834 hasConceptScore W4310368834C149923435 @default.
- W4310368834 hasConceptScore W4310368834C154945302 @default.
- W4310368834 hasConceptScore W4310368834C155202549 @default.
- W4310368834 hasConceptScore W4310368834C157085824 @default.
- W4310368834 hasConceptScore W4310368834C173608175 @default.
- W4310368834 hasConceptScore W4310368834C205649164 @default.
- W4310368834 hasConceptScore W4310368834C26271046 @default.
- W4310368834 hasConceptScore W4310368834C2777421447 @default.
- W4310368834 hasConceptScore W4310368834C2778707766 @default.
- W4310368834 hasConceptScore W4310368834C2780031633 @default.
- W4310368834 hasConceptScore W4310368834C2908647359 @default.
- W4310368834 hasConceptScore W4310368834C33923547 @default.
- W4310368834 hasConceptScore W4310368834C41008148 @default.
- W4310368834 hasConceptScore W4310368834C41895202 @default.
- W4310368834 hasConceptScore W4310368834C42475967 @default.
- W4310368834 hasConceptScore W4310368834C76155785 @default.
- W4310368834 hasConceptScore W4310368834C87889798 @default.
- W4310368834 hasConceptScore W4310368834C98045186 @default.
- W4310368834 hasLocation W43103688341 @default.
- W4310368834 hasOpenAccess W4310368834 @default.
- W4310368834 hasPrimaryLocation W43103688341 @default.