Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310376490> ?p ?o ?g. }
- W4310376490 endingPage "429" @default.
- W4310376490 startingPage "399" @default.
- W4310376490 abstract "In diagnostic classification models, parameter estimation sometimes provides estimates that stick to the boundaries of the parameter space, which is called the boundary problem and may lead to extreme values of standard errors. However, the relationship between the boundary problem and irregular standard errors has not been analytically explored. In addition, prior research has not shown how maximum-a-posteriori estimates avoid the boundary problem and affect the standard errors of estimates. To analyze these relationships, the expectation–maximization algorithm for maximum-a-posteriori estimates and a complete data Fisher information matrix are explicitly derived for a mixture formulation of saturated diagnostic classification models. Theoretical considerations show that the emptiness of attribute mastery patterns causes both the boundary problem and the inaccurate standard error estimates. Furthermore, unfortunate boundary problem without emptiness causes shorter standard errors. A simulation study shows that the maximum-a-posteriori method prevents boundary problems. Moreover, this method with monotonicity constraint estimation improves standard error estimates more than unconstrained maximum likelihood estimates do." @default.
- W4310376490 created "2022-12-10" @default.
- W4310376490 creator A5075097946 @default.
- W4310376490 date "2022-11-30" @default.
- W4310376490 modified "2023-10-13" @default.
- W4310376490 title "On the boundary problems in diagnostic classification models" @default.
- W4310376490 cites W1880262756 @default.
- W4310376490 cites W1993245107 @default.
- W4310376490 cites W1995884758 @default.
- W4310376490 cites W1995994041 @default.
- W4310376490 cites W1998487261 @default.
- W4310376490 cites W2005093659 @default.
- W4310376490 cites W2006389333 @default.
- W4310376490 cites W2033398919 @default.
- W4310376490 cites W2043690467 @default.
- W4310376490 cites W2049881087 @default.
- W4310376490 cites W2053211864 @default.
- W4310376490 cites W2054855387 @default.
- W4310376490 cites W2066308857 @default.
- W4310376490 cites W2079933101 @default.
- W4310376490 cites W2108611097 @default.
- W4310376490 cites W2130415731 @default.
- W4310376490 cites W2147750192 @default.
- W4310376490 cites W2148415528 @default.
- W4310376490 cites W2151257151 @default.
- W4310376490 cites W2155138556 @default.
- W4310376490 cites W2160920329 @default.
- W4310376490 cites W2165814930 @default.
- W4310376490 cites W2337802799 @default.
- W4310376490 cites W2509309843 @default.
- W4310376490 cites W2554734798 @default.
- W4310376490 cites W2615485530 @default.
- W4310376490 cites W2616551144 @default.
- W4310376490 cites W2716847298 @default.
- W4310376490 cites W2751565302 @default.
- W4310376490 cites W2790386273 @default.
- W4310376490 cites W2790907606 @default.
- W4310376490 cites W2794524118 @default.
- W4310376490 cites W2887590485 @default.
- W4310376490 cites W2896426532 @default.
- W4310376490 cites W2900724080 @default.
- W4310376490 cites W2942062793 @default.
- W4310376490 cites W2946758722 @default.
- W4310376490 cites W2969403542 @default.
- W4310376490 cites W2969778518 @default.
- W4310376490 cites W2999300871 @default.
- W4310376490 cites W3004140487 @default.
- W4310376490 cites W3037606774 @default.
- W4310376490 cites W3093676707 @default.
- W4310376490 cites W3107893222 @default.
- W4310376490 cites W3113382274 @default.
- W4310376490 cites W3118802160 @default.
- W4310376490 cites W3123496600 @default.
- W4310376490 cites W3159316835 @default.
- W4310376490 cites W3165472583 @default.
- W4310376490 cites W4226269572 @default.
- W4310376490 cites W4229628595 @default.
- W4310376490 cites W845785718 @default.
- W4310376490 doi "https://doi.org/10.1007/s41237-022-00187-7" @default.
- W4310376490 hasPublicationYear "2022" @default.
- W4310376490 type Work @default.
- W4310376490 citedByCount "2" @default.
- W4310376490 countsByYear W43103764902023 @default.
- W4310376490 crossrefType "journal-article" @default.
- W4310376490 hasAuthorship W4310376490A5075097946 @default.
- W4310376490 hasBestOaLocation W43103764902 @default.
- W4310376490 hasConcept C105795698 @default.
- W4310376490 hasConcept C111472728 @default.
- W4310376490 hasConcept C126255220 @default.
- W4310376490 hasConcept C134306372 @default.
- W4310376490 hasConcept C138885662 @default.
- W4310376490 hasConcept C182081679 @default.
- W4310376490 hasConcept C182310444 @default.
- W4310376490 hasConcept C18747219 @default.
- W4310376490 hasConcept C2524010 @default.
- W4310376490 hasConcept C2776036281 @default.
- W4310376490 hasConcept C2776330181 @default.
- W4310376490 hasConcept C28826006 @default.
- W4310376490 hasConcept C33923547 @default.
- W4310376490 hasConcept C49781872 @default.
- W4310376490 hasConcept C62354387 @default.
- W4310376490 hasConcept C72169020 @default.
- W4310376490 hasConcept C75553542 @default.
- W4310376490 hasConcept C9810830 @default.
- W4310376490 hasConceptScore W4310376490C105795698 @default.
- W4310376490 hasConceptScore W4310376490C111472728 @default.
- W4310376490 hasConceptScore W4310376490C126255220 @default.
- W4310376490 hasConceptScore W4310376490C134306372 @default.
- W4310376490 hasConceptScore W4310376490C138885662 @default.
- W4310376490 hasConceptScore W4310376490C182081679 @default.
- W4310376490 hasConceptScore W4310376490C182310444 @default.
- W4310376490 hasConceptScore W4310376490C18747219 @default.
- W4310376490 hasConceptScore W4310376490C2524010 @default.
- W4310376490 hasConceptScore W4310376490C2776036281 @default.
- W4310376490 hasConceptScore W4310376490C2776330181 @default.
- W4310376490 hasConceptScore W4310376490C28826006 @default.
- W4310376490 hasConceptScore W4310376490C33923547 @default.
- W4310376490 hasConceptScore W4310376490C49781872 @default.