Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310376514> ?p ?o ?g. }
- W4310376514 endingPage "872" @default.
- W4310376514 startingPage "849" @default.
- W4310376514 abstract "High-quality ground-truth data are critical for developing reliable Earth Observation (EO) based geospatial products. Conventional methods of collecting these data are either subject to an unknown amount of human error and bias or require extended time in the field to complete (i.e., point-intercept assessments). Digital photograph classification (DPC) may address these drawbacks. In this study, we first assess the performance of a DPC method developed through licensed software to estimate ground cover percentage (%) of bright lichens, a critical caribou forage in fall and winter when other food resources are scarce. We then evaluate the feasibility of replicating this workflow in an open-source environment with a modified U-net model to improve processing time and scalability. Our results indicate that DPC is appropriate for generating ground-truth data in support of large-scale EO-based lichen mapping within the boreal forests of eastern Canada. Our final open-sourced classification model, Lichen Convolutional Neural Network (LiCNN), is comparably accurate yet more efficient than the licensed workflow. Therefore, the LiCNN approach successfully addresses the mentioned shortcomings of conventional ground-truth data collection methods efficiently and without the need for specialized software." @default.
- W4310376514 created "2022-12-10" @default.
- W4310376514 creator A5015216184 @default.
- W4310376514 creator A5018302078 @default.
- W4310376514 creator A5024627907 @default.
- W4310376514 creator A5025907386 @default.
- W4310376514 creator A5030378606 @default.
- W4310376514 creator A5031924201 @default.
- W4310376514 creator A5036132863 @default.
- W4310376514 creator A5051089229 @default.
- W4310376514 creator A5069499308 @default.
- W4310376514 creator A5076511592 @default.
- W4310376514 date "2022-11-02" @default.
- W4310376514 modified "2023-10-11" @default.
- W4310376514 title "A New U-Net Based Convolutional Neural Network for Estimating Caribou Lichen Ground Cover from Field-Level RGB Images" @default.
- W4310376514 cites W1901129140 @default.
- W4310376514 cites W1925428423 @default.
- W4310376514 cites W1926172746 @default.
- W4310376514 cites W1964615151 @default.
- W4310376514 cites W1965644923 @default.
- W4310376514 cites W2000518020 @default.
- W4310376514 cites W2055677294 @default.
- W4310376514 cites W2074916007 @default.
- W4310376514 cites W2107490218 @default.
- W4310376514 cites W2112712548 @default.
- W4310376514 cites W2133309522 @default.
- W4310376514 cites W2140589493 @default.
- W4310376514 cites W2151199525 @default.
- W4310376514 cites W2419169177 @default.
- W4310376514 cites W2471406164 @default.
- W4310376514 cites W2520364485 @default.
- W4310376514 cites W2526771830 @default.
- W4310376514 cites W2586924408 @default.
- W4310376514 cites W2769625730 @default.
- W4310376514 cites W2791765803 @default.
- W4310376514 cites W2909597226 @default.
- W4310376514 cites W2950895784 @default.
- W4310376514 cites W2956159545 @default.
- W4310376514 cites W2968242421 @default.
- W4310376514 cites W2999955955 @default.
- W4310376514 cites W3007268491 @default.
- W4310376514 cites W3009503996 @default.
- W4310376514 cites W3010345596 @default.
- W4310376514 cites W3031965526 @default.
- W4310376514 cites W3033333350 @default.
- W4310376514 cites W3083793552 @default.
- W4310376514 cites W3181950296 @default.
- W4310376514 cites W3201334366 @default.
- W4310376514 cites W3207064546 @default.
- W4310376514 cites W3207191184 @default.
- W4310376514 cites W4247147020 @default.
- W4310376514 doi "https://doi.org/10.1080/07038992.2022.2144179" @default.
- W4310376514 hasPublicationYear "2022" @default.
- W4310376514 type Work @default.
- W4310376514 citedByCount "1" @default.
- W4310376514 crossrefType "journal-article" @default.
- W4310376514 hasAuthorship W4310376514A5015216184 @default.
- W4310376514 hasAuthorship W4310376514A5018302078 @default.
- W4310376514 hasAuthorship W4310376514A5024627907 @default.
- W4310376514 hasAuthorship W4310376514A5025907386 @default.
- W4310376514 hasAuthorship W4310376514A5030378606 @default.
- W4310376514 hasAuthorship W4310376514A5031924201 @default.
- W4310376514 hasAuthorship W4310376514A5036132863 @default.
- W4310376514 hasAuthorship W4310376514A5051089229 @default.
- W4310376514 hasAuthorship W4310376514A5069499308 @default.
- W4310376514 hasAuthorship W4310376514A5076511592 @default.
- W4310376514 hasBestOaLocation W43103765141 @default.
- W4310376514 hasConcept C124101348 @default.
- W4310376514 hasConcept C146849305 @default.
- W4310376514 hasConcept C154945302 @default.
- W4310376514 hasConcept C177212765 @default.
- W4310376514 hasConcept C199360897 @default.
- W4310376514 hasConcept C202444582 @default.
- W4310376514 hasConcept C205649164 @default.
- W4310376514 hasConcept C2777904410 @default.
- W4310376514 hasConcept C2778755073 @default.
- W4310376514 hasConcept C33923547 @default.
- W4310376514 hasConcept C41008148 @default.
- W4310376514 hasConcept C48044578 @default.
- W4310376514 hasConcept C58640448 @default.
- W4310376514 hasConcept C62649853 @default.
- W4310376514 hasConcept C77088390 @default.
- W4310376514 hasConcept C81363708 @default.
- W4310376514 hasConcept C82990744 @default.
- W4310376514 hasConcept C9652623 @default.
- W4310376514 hasConcept C9770341 @default.
- W4310376514 hasConceptScore W4310376514C124101348 @default.
- W4310376514 hasConceptScore W4310376514C146849305 @default.
- W4310376514 hasConceptScore W4310376514C154945302 @default.
- W4310376514 hasConceptScore W4310376514C177212765 @default.
- W4310376514 hasConceptScore W4310376514C199360897 @default.
- W4310376514 hasConceptScore W4310376514C202444582 @default.
- W4310376514 hasConceptScore W4310376514C205649164 @default.
- W4310376514 hasConceptScore W4310376514C2777904410 @default.
- W4310376514 hasConceptScore W4310376514C2778755073 @default.
- W4310376514 hasConceptScore W4310376514C33923547 @default.
- W4310376514 hasConceptScore W4310376514C41008148 @default.
- W4310376514 hasConceptScore W4310376514C48044578 @default.