Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310386970> ?p ?o ?g. }
- W4310386970 endingPage "9081" @default.
- W4310386970 startingPage "9081" @default.
- W4310386970 abstract "The extensive use of renewable energy sources (RESs) in energy sectors plays a vital role in meeting the present energy demand. The widespread utilization of allocated resources leads to multiple usages of converters for synchronization with the power grid, introducing poor power quality. The integration of distributed energy resources produces uncertainties which are reflected in the distribution system. The major power quality problems such as voltage sag/swell, voltage unbalancing, poor power factor, harmonics distortion (THD), and power transients appear during the transition of micro-grids (MGs). In this research, a single micro-grid is designed with PVs, wind generators, and fuel cells as distributed energy resources (DERs). A nonlinear auto regressive exogenous input neural network (NARX-NN) controller has been investigated in this micro-grid in order to maintain the above power quality issues within the specific standard range (IEEE/IEC standards). The performance of the NARX-NN controller is compared with PID and fuzzy-PID controllers. The single micro-grid is extended to design a three-phase large-scale realistic micro-grid structure to test the feasibility of the proposed controller. The realistic micro-grid is verified through addition of line-impedance, communication delay, demand response, and off-nominal situations. The proposed controller is also validated by simulating different test scenarios using MATLAB/Simulink and TMS320-based processor-in-loop (PIL) for real-time implementation." @default.
- W4310386970 created "2022-12-10" @default.
- W4310386970 creator A5032370392 @default.
- W4310386970 creator A5035984463 @default.
- W4310386970 creator A5069028269 @default.
- W4310386970 date "2022-11-30" @default.
- W4310386970 modified "2023-10-05" @default.
- W4310386970 title "Real-Time Power Quality Enhancement in a Hybrid Micro-Grid Using Nonlinear Autoregressive Neural Network" @default.
- W4310386970 cites W1980853758 @default.
- W4310386970 cites W2009867197 @default.
- W4310386970 cites W2014251916 @default.
- W4310386970 cites W2019971481 @default.
- W4310386970 cites W2023744873 @default.
- W4310386970 cites W2051812123 @default.
- W4310386970 cites W2071780137 @default.
- W4310386970 cites W2074906024 @default.
- W4310386970 cites W2089108087 @default.
- W4310386970 cites W2095082954 @default.
- W4310386970 cites W2155782290 @default.
- W4310386970 cites W2160357719 @default.
- W4310386970 cites W2326838496 @default.
- W4310386970 cites W2344573532 @default.
- W4310386970 cites W2404826697 @default.
- W4310386970 cites W2472547855 @default.
- W4310386970 cites W2539669639 @default.
- W4310386970 cites W2549538853 @default.
- W4310386970 cites W2561947215 @default.
- W4310386970 cites W2612403449 @default.
- W4310386970 cites W2745022429 @default.
- W4310386970 cites W2749378513 @default.
- W4310386970 cites W2769031976 @default.
- W4310386970 cites W2769643308 @default.
- W4310386970 cites W2782627022 @default.
- W4310386970 cites W2782905083 @default.
- W4310386970 cites W2783824888 @default.
- W4310386970 cites W2791416295 @default.
- W4310386970 cites W2797084906 @default.
- W4310386970 cites W2799482533 @default.
- W4310386970 cites W2810910171 @default.
- W4310386970 cites W2890327778 @default.
- W4310386970 cites W2898618248 @default.
- W4310386970 cites W2904124626 @default.
- W4310386970 cites W2909280712 @default.
- W4310386970 cites W2914257371 @default.
- W4310386970 cites W2916954827 @default.
- W4310386970 cites W2946778817 @default.
- W4310386970 cites W2953046096 @default.
- W4310386970 cites W2969376635 @default.
- W4310386970 cites W3034184292 @default.
- W4310386970 cites W3040546163 @default.
- W4310386970 cites W3047623305 @default.
- W4310386970 cites W4253983157 @default.
- W4310386970 cites W3006570707 @default.
- W4310386970 doi "https://doi.org/10.3390/en15239081" @default.
- W4310386970 hasPublicationYear "2022" @default.
- W4310386970 type Work @default.
- W4310386970 citedByCount "3" @default.
- W4310386970 countsByYear W43103869702023 @default.
- W4310386970 crossrefType "journal-article" @default.
- W4310386970 hasAuthorship W4310386970A5032370392 @default.
- W4310386970 hasAuthorship W4310386970A5035984463 @default.
- W4310386970 hasAuthorship W4310386970A5069028269 @default.
- W4310386970 hasBestOaLocation W43103869701 @default.
- W4310386970 hasConcept C119599485 @default.
- W4310386970 hasConcept C119857082 @default.
- W4310386970 hasConcept C127413603 @default.
- W4310386970 hasConcept C133731056 @default.
- W4310386970 hasConcept C154945302 @default.
- W4310386970 hasConcept C188573790 @default.
- W4310386970 hasConcept C203479927 @default.
- W4310386970 hasConcept C2775924081 @default.
- W4310386970 hasConcept C41008148 @default.
- W4310386970 hasConcept C42536954 @default.
- W4310386970 hasConcept C47116090 @default.
- W4310386970 hasConcept C47446073 @default.
- W4310386970 hasConcept C50644808 @default.
- W4310386970 hasConcept C536315585 @default.
- W4310386970 hasConcept C544738498 @default.
- W4310386970 hasConcept C6557445 @default.
- W4310386970 hasConcept C86803240 @default.
- W4310386970 hasConceptScore W4310386970C119599485 @default.
- W4310386970 hasConceptScore W4310386970C119857082 @default.
- W4310386970 hasConceptScore W4310386970C127413603 @default.
- W4310386970 hasConceptScore W4310386970C133731056 @default.
- W4310386970 hasConceptScore W4310386970C154945302 @default.
- W4310386970 hasConceptScore W4310386970C188573790 @default.
- W4310386970 hasConceptScore W4310386970C203479927 @default.
- W4310386970 hasConceptScore W4310386970C2775924081 @default.
- W4310386970 hasConceptScore W4310386970C41008148 @default.
- W4310386970 hasConceptScore W4310386970C42536954 @default.
- W4310386970 hasConceptScore W4310386970C47116090 @default.
- W4310386970 hasConceptScore W4310386970C47446073 @default.
- W4310386970 hasConceptScore W4310386970C50644808 @default.
- W4310386970 hasConceptScore W4310386970C536315585 @default.
- W4310386970 hasConceptScore W4310386970C544738498 @default.
- W4310386970 hasConceptScore W4310386970C6557445 @default.
- W4310386970 hasConceptScore W4310386970C86803240 @default.
- W4310386970 hasIssue "23" @default.