Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310388701> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4310388701 endingPage "4986" @default.
- W4310388701 startingPage "4967" @default.
- W4310388701 abstract "The first step in this research is to find some of the necessary estimations in approximation by using certain algebraic polynomials, as well as we use certain specific points in approximation. There are many estimations that help to find the best approximation using algebraic polynomials and geometric polynomials. Throughout this research, we deal with some of these estimations to estimate the best approximation error using algebraic polynomials where the basic estimations in approximation are discussed and proven using algebraic polynomials that are discussed and proven using algebraic polynomials that are specified by the following points and if as well as if . For the second step of the work, the estimations in the first step are used to find and estimate the error for the best approximation of the weighted function . This is done through the use of an algebraic polynomial whose degree at most is where the sign of the algebraic polynomial is positive. Further, the error is also found and estimated for the best approximation of the restricted function using the restricted algebraic polynomial , which is copositive with the function in the quasi weighted normed space. In addition, we deal with the created estimations to estimate the error of the best approximation of the function by using pieces of algebraic polynomials that are of the highest degree .These pieces of algebraic polynomials are connected to each other, so they have formed a spline of the highest degree whose knots are considered the contact areas of the algebraic polynomials." @default.
- W4310388701 created "2022-12-10" @default.
- W4310388701 creator A5077287029 @default.
- W4310388701 date "2022-11-30" @default.
- W4310388701 modified "2023-09-25" @default.
- W4310388701 title "Pointwise Estimates for Finding the Error of Best Approximation by Spline, Positive Algebraic Polynomials and Copositive" @default.
- W4310388701 doi "https://doi.org/10.24996/ijs.2022.63.11.33" @default.
- W4310388701 hasPublicationYear "2022" @default.
- W4310388701 type Work @default.
- W4310388701 citedByCount "0" @default.
- W4310388701 crossrefType "journal-article" @default.
- W4310388701 hasAuthorship W4310388701A5077287029 @default.
- W4310388701 hasBestOaLocation W43103887011 @default.
- W4310388701 hasConcept C10628310 @default.
- W4310388701 hasConcept C10996884 @default.
- W4310388701 hasConcept C114614502 @default.
- W4310388701 hasConcept C118615104 @default.
- W4310388701 hasConcept C122383733 @default.
- W4310388701 hasConcept C134306372 @default.
- W4310388701 hasConcept C148607811 @default.
- W4310388701 hasConcept C186219872 @default.
- W4310388701 hasConcept C21736991 @default.
- W4310388701 hasConcept C2731732 @default.
- W4310388701 hasConcept C2777984123 @default.
- W4310388701 hasConcept C28826006 @default.
- W4310388701 hasConcept C33923547 @default.
- W4310388701 hasConcept C51544822 @default.
- W4310388701 hasConcept C78045399 @default.
- W4310388701 hasConcept C86607863 @default.
- W4310388701 hasConcept C89290136 @default.
- W4310388701 hasConcept C90119067 @default.
- W4310388701 hasConcept C9376300 @default.
- W4310388701 hasConceptScore W4310388701C10628310 @default.
- W4310388701 hasConceptScore W4310388701C10996884 @default.
- W4310388701 hasConceptScore W4310388701C114614502 @default.
- W4310388701 hasConceptScore W4310388701C118615104 @default.
- W4310388701 hasConceptScore W4310388701C122383733 @default.
- W4310388701 hasConceptScore W4310388701C134306372 @default.
- W4310388701 hasConceptScore W4310388701C148607811 @default.
- W4310388701 hasConceptScore W4310388701C186219872 @default.
- W4310388701 hasConceptScore W4310388701C21736991 @default.
- W4310388701 hasConceptScore W4310388701C2731732 @default.
- W4310388701 hasConceptScore W4310388701C2777984123 @default.
- W4310388701 hasConceptScore W4310388701C28826006 @default.
- W4310388701 hasConceptScore W4310388701C33923547 @default.
- W4310388701 hasConceptScore W4310388701C51544822 @default.
- W4310388701 hasConceptScore W4310388701C78045399 @default.
- W4310388701 hasConceptScore W4310388701C86607863 @default.
- W4310388701 hasConceptScore W4310388701C89290136 @default.
- W4310388701 hasConceptScore W4310388701C90119067 @default.
- W4310388701 hasConceptScore W4310388701C9376300 @default.
- W4310388701 hasLocation W43103887011 @default.
- W4310388701 hasOpenAccess W4310388701 @default.
- W4310388701 hasPrimaryLocation W43103887011 @default.
- W4310388701 hasRelatedWork W1984537908 @default.
- W4310388701 hasRelatedWork W2019519844 @default.
- W4310388701 hasRelatedWork W2120229269 @default.
- W4310388701 hasRelatedWork W2740179225 @default.
- W4310388701 hasRelatedWork W3022554530 @default.
- W4310388701 hasRelatedWork W3090789507 @default.
- W4310388701 hasRelatedWork W4230141659 @default.
- W4310388701 hasRelatedWork W4233049353 @default.
- W4310388701 hasRelatedWork W4256397181 @default.
- W4310388701 hasRelatedWork W4298027993 @default.
- W4310388701 isParatext "false" @default.
- W4310388701 isRetracted "false" @default.
- W4310388701 workType "article" @default.