Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310388927> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4310388927 endingPage "15988" @default.
- W4310388927 startingPage "15988" @default.
- W4310388927 abstract "China’s power industry is a major energy consumer, with the carbon dioxide (CO2) generated by coal consumption making the power industry one of the key emission sectors. Therefore, it is crucial to explore energy conservation and emissions reduction strategies suitable for China’s current situation. Taking a typical cogeneration enterprise in North China as an example, this paper aims to establish a generalized regression prediction model for carbon emissions of coal-fired power plants, which will provide a reference for China to seek strategies for carbon peaking and carbon neutralization in the future. Firstly, in terms of the selection of influencing factors, this paper uses objective index screening methods, simulation means, and the eXtreme Gradient Boosting algorithm (XG-Boost) to analyze the feature importance of various influencing factors. It is concluded that the relevant influencing factors of the boiler feed water system have a strong correlation and characteristic importance with the carbon emissions results of coal-fired power plants. Therefore, this paper proposes to introduce these factors into the regression prediction model as auxiliary variables to more scientifically reflect the carbon emissions results of coal-fired power plants. Secondly, in the aspect of regression prediction model establishment, inspired by the sparrow’s foraging behavior and anti-predation behavior, this paper selects the sparrow search algorithm (SSA) with strong optimization ability and fast convergence speed to optimize the super parameters of the long short-term memory network algorithm (LSTM). It is proposed to use the SSA-LSTM algorithm to establish the carbon emissions regression prediction model of coal-fired power plants. The advantage of the SSA-LSTM algorithm is that it can effectively simplify the super parameter selection process of the LSTM algorithm, effectively solve the global optimization problem, prevent the model from falling into overfitting and local optimization, and make the carbon emissions regression prediction model of coal-fired power plants achieve a better fitting effect. By comparing the performance indicators of the model before and after the improvement, it is found that the regression prediction effect of the SSA-LSTM coal-fired power plant carbon emissions regression prediction model, which introduces boiler feed water influencing factors, has been effectively improved. Therefore, the model proposed in this paper can be used to conduct a comprehensive impact factor analysis and regression prediction analysis on the carbon emissions intensity of China’s coal-fired power plants, formulate targeted carbon emissions reduction countermeasures, and provide a theoretical basis for energy conservation and emissions reduction of China’s coal-fired power plants." @default.
- W4310388927 created "2022-12-10" @default.
- W4310388927 creator A5059358814 @default.
- W4310388927 creator A5062534202 @default.
- W4310388927 creator A5071037763 @default.
- W4310388927 creator A5086254860 @default.
- W4310388927 date "2022-11-30" @default.
- W4310388927 modified "2023-10-16" @default.
- W4310388927 title "Research on Carbon Emissions Prediction Model of Thermal Power Plant Based on SSA-LSTM Algorithm with Boiler Feed Water Influencing Factors" @default.
- W4310388927 cites W2004869183 @default.
- W4310388927 cites W2021654889 @default.
- W4310388927 cites W2031118743 @default.
- W4310388927 cites W2054736113 @default.
- W4310388927 cites W2070418238 @default.
- W4310388927 cites W2083522589 @default.
- W4310388927 cites W2620773488 @default.
- W4310388927 cites W2626687215 @default.
- W4310388927 cites W3173981125 @default.
- W4310388927 doi "https://doi.org/10.3390/su142315988" @default.
- W4310388927 hasPublicationYear "2022" @default.
- W4310388927 type Work @default.
- W4310388927 citedByCount "4" @default.
- W4310388927 countsByYear W43103889272023 @default.
- W4310388927 crossrefType "journal-article" @default.
- W4310388927 hasAuthorship W4310388927A5059358814 @default.
- W4310388927 hasAuthorship W4310388927A5062534202 @default.
- W4310388927 hasAuthorship W4310388927A5071037763 @default.
- W4310388927 hasAuthorship W4310388927A5086254860 @default.
- W4310388927 hasBestOaLocation W43103889271 @default.
- W4310388927 hasConcept C119599485 @default.
- W4310388927 hasConcept C127413603 @default.
- W4310388927 hasConcept C188573790 @default.
- W4310388927 hasConcept C18903297 @default.
- W4310388927 hasConcept C2780013297 @default.
- W4310388927 hasConcept C41008148 @default.
- W4310388927 hasConcept C47737302 @default.
- W4310388927 hasConcept C518851703 @default.
- W4310388927 hasConcept C548081761 @default.
- W4310388927 hasConcept C86803240 @default.
- W4310388927 hasConceptScore W4310388927C119599485 @default.
- W4310388927 hasConceptScore W4310388927C127413603 @default.
- W4310388927 hasConceptScore W4310388927C188573790 @default.
- W4310388927 hasConceptScore W4310388927C18903297 @default.
- W4310388927 hasConceptScore W4310388927C2780013297 @default.
- W4310388927 hasConceptScore W4310388927C41008148 @default.
- W4310388927 hasConceptScore W4310388927C47737302 @default.
- W4310388927 hasConceptScore W4310388927C518851703 @default.
- W4310388927 hasConceptScore W4310388927C548081761 @default.
- W4310388927 hasConceptScore W4310388927C86803240 @default.
- W4310388927 hasIssue "23" @default.
- W4310388927 hasLocation W43103889271 @default.
- W4310388927 hasOpenAccess W4310388927 @default.
- W4310388927 hasPrimaryLocation W43103889271 @default.
- W4310388927 hasRelatedWork W1531841317 @default.
- W4310388927 hasRelatedWork W2350784973 @default.
- W4310388927 hasRelatedWork W2351830893 @default.
- W4310388927 hasRelatedWork W2360728696 @default.
- W4310388927 hasRelatedWork W2369676252 @default.
- W4310388927 hasRelatedWork W2371599223 @default.
- W4310388927 hasRelatedWork W2377430790 @default.
- W4310388927 hasRelatedWork W2899084033 @default.
- W4310388927 hasRelatedWork W4378189364 @default.
- W4310388927 hasRelatedWork W3125486827 @default.
- W4310388927 hasVolume "14" @default.
- W4310388927 isParatext "false" @default.
- W4310388927 isRetracted "false" @default.
- W4310388927 workType "article" @default.