Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310398812> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4310398812 abstract "Automatic modulation classification (AMC) became an important process in various communication systems including commercial, telecommunication and military applications. Further, the accuracy of AMC impacts the performance of these applications. Various machine learning approaches were developed to improve the performance of AMC. However, they failed to classify the different modulation schemes, which needs to satisfy all the spectrum requirements under multipath fading environment. Further, the conventional methods suffer with computational complexity in training to satisfy the real-time operational requirements. So, this paper focuses on implementation of extreme learning machine (ELM) for reduction of training complexities and improves the classification performance. Initially, deep leaning convolutional neural network (DLCNN) model is introduced for extracting the interdependent modulation features based on different modulation types. Then, red deer optimization algorithm (RDOA) is introduced for selecting the best features from DLCNN extracted features. Further, the hybrid ELM with bagging classifier (HELM-BC) is used to classify the various modulation types, i.e., families. The simulation results show that the performance of the proposed AMC system using RDOA-based HELM-BC approach is superior to the conventional AMC systems." @default.
- W4310398812 created "2022-12-10" @default.
- W4310398812 creator A5014160481 @default.
- W4310398812 creator A5041988471 @default.
- W4310398812 date "2022-11-30" @default.
- W4310398812 modified "2023-10-14" @default.
- W4310398812 title "Red deer optimization for automatic modulation classification using hybrid extreme learning machine with bagging classifier" @default.
- W4310398812 cites W2272847350 @default.
- W4310398812 cites W2790896200 @default.
- W4310398812 cites W2892154397 @default.
- W4310398812 cites W2944891925 @default.
- W4310398812 cites W2953143151 @default.
- W4310398812 cites W2961742849 @default.
- W4310398812 cites W2999371818 @default.
- W4310398812 cites W3000943722 @default.
- W4310398812 cites W3003174479 @default.
- W4310398812 cites W3003494250 @default.
- W4310398812 cites W3006635105 @default.
- W4310398812 cites W3008364176 @default.
- W4310398812 cites W3011724393 @default.
- W4310398812 cites W3013935691 @default.
- W4310398812 cites W3022311971 @default.
- W4310398812 cites W3023365694 @default.
- W4310398812 cites W3038716110 @default.
- W4310398812 cites W3103114094 @default.
- W4310398812 cites W3104028856 @default.
- W4310398812 cites W3112647738 @default.
- W4310398812 doi "https://doi.org/10.1142/s1793962322500635" @default.
- W4310398812 hasPublicationYear "2022" @default.
- W4310398812 type Work @default.
- W4310398812 citedByCount "0" @default.
- W4310398812 crossrefType "journal-article" @default.
- W4310398812 hasAuthorship W4310398812A5014160481 @default.
- W4310398812 hasAuthorship W4310398812A5041988471 @default.
- W4310398812 hasConcept C107038049 @default.
- W4310398812 hasConcept C119857082 @default.
- W4310398812 hasConcept C12267149 @default.
- W4310398812 hasConcept C123079801 @default.
- W4310398812 hasConcept C126255220 @default.
- W4310398812 hasConcept C127162648 @default.
- W4310398812 hasConcept C138885662 @default.
- W4310398812 hasConcept C153180895 @default.
- W4310398812 hasConcept C154945302 @default.
- W4310398812 hasConcept C161218011 @default.
- W4310398812 hasConcept C2780150128 @default.
- W4310398812 hasConcept C2987595161 @default.
- W4310398812 hasConcept C33923547 @default.
- W4310398812 hasConcept C41008148 @default.
- W4310398812 hasConcept C50644808 @default.
- W4310398812 hasConcept C76155785 @default.
- W4310398812 hasConcept C81363708 @default.
- W4310398812 hasConcept C95623464 @default.
- W4310398812 hasConceptScore W4310398812C107038049 @default.
- W4310398812 hasConceptScore W4310398812C119857082 @default.
- W4310398812 hasConceptScore W4310398812C12267149 @default.
- W4310398812 hasConceptScore W4310398812C123079801 @default.
- W4310398812 hasConceptScore W4310398812C126255220 @default.
- W4310398812 hasConceptScore W4310398812C127162648 @default.
- W4310398812 hasConceptScore W4310398812C138885662 @default.
- W4310398812 hasConceptScore W4310398812C153180895 @default.
- W4310398812 hasConceptScore W4310398812C154945302 @default.
- W4310398812 hasConceptScore W4310398812C161218011 @default.
- W4310398812 hasConceptScore W4310398812C2780150128 @default.
- W4310398812 hasConceptScore W4310398812C2987595161 @default.
- W4310398812 hasConceptScore W4310398812C33923547 @default.
- W4310398812 hasConceptScore W4310398812C41008148 @default.
- W4310398812 hasConceptScore W4310398812C50644808 @default.
- W4310398812 hasConceptScore W4310398812C76155785 @default.
- W4310398812 hasConceptScore W4310398812C81363708 @default.
- W4310398812 hasConceptScore W4310398812C95623464 @default.
- W4310398812 hasIssue "06" @default.
- W4310398812 hasLocation W43103988121 @default.
- W4310398812 hasOpenAccess W4310398812 @default.
- W4310398812 hasPrimaryLocation W43103988121 @default.
- W4310398812 hasRelatedWork W2025697666 @default.
- W4310398812 hasRelatedWork W2041636156 @default.
- W4310398812 hasRelatedWork W2120008580 @default.
- W4310398812 hasRelatedWork W2160451891 @default.
- W4310398812 hasRelatedWork W2556319748 @default.
- W4310398812 hasRelatedWork W2902466377 @default.
- W4310398812 hasRelatedWork W2995914718 @default.
- W4310398812 hasRelatedWork W3193301557 @default.
- W4310398812 hasRelatedWork W4246837237 @default.
- W4310398812 hasRelatedWork W564581980 @default.
- W4310398812 hasVolume "13" @default.
- W4310398812 isParatext "false" @default.
- W4310398812 isRetracted "false" @default.
- W4310398812 workType "article" @default.