Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310421176> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4310421176 abstract "With the flourishing development of nanophotonics, Cherenkov radiation pattern can be designed to achieve superior performance in particle detection by fine-tuning the properties of metamaterials such as photonic crystals (PCs) surrounding the swift particle. However, the radiation pattern can be sensitive to the geometry and material properties of PCs, such as periodicity, unit thickness, and dielectric fraction, making direct analysis and inverse design difficult. In this article, we propose a systematic method to analyze and design PC-based transition radiation, which is assisted by deep learning neural networks. By matching boundary conditions at the interfaces, Cherenkov-like radiation of multilayered structures can be resolved analytically using the cascading scattering matrix method, despite the optical axes not being aligned with the swift electron trajectory. Once well trained, forward deep learning neural networks can be utilized to predict the radiation pattern without further direct electromagnetic simulations; moreover, Tandem neural networks have been proposed to inversely design the geometry and/or material properties for desired Cherenkov radiation pattern. Our proposal demonstrates a promising strategy for dealing with layered-medium-based Cherenkov radiation detectors, and it can be extended for other emerging metamaterials, such as photonic time crystals." @default.
- W4310421176 created "2022-12-10" @default.
- W4310421176 creator A5014604665 @default.
- W4310421176 creator A5027212910 @default.
- W4310421176 creator A5075086498 @default.
- W4310421176 creator A5078523251 @default.
- W4310421176 creator A5088035284 @default.
- W4310421176 creator A5089291482 @default.
- W4310421176 date "2022-11-28" @default.
- W4310421176 modified "2023-10-01" @default.
- W4310421176 title "Analysis and design of transition radiation in layered uniaxial crystals using Tandem neural networks" @default.
- W4310421176 doi "https://doi.org/10.48550/arxiv.2211.15117" @default.
- W4310421176 hasPublicationYear "2022" @default.
- W4310421176 type Work @default.
- W4310421176 citedByCount "0" @default.
- W4310421176 crossrefType "posted-content" @default.
- W4310421176 hasAuthorship W4310421176A5014604665 @default.
- W4310421176 hasAuthorship W4310421176A5027212910 @default.
- W4310421176 hasAuthorship W4310421176A5075086498 @default.
- W4310421176 hasAuthorship W4310421176A5078523251 @default.
- W4310421176 hasAuthorship W4310421176A5088035284 @default.
- W4310421176 hasAuthorship W4310421176A5089291482 @default.
- W4310421176 hasBestOaLocation W43104211761 @default.
- W4310421176 hasConcept C110367647 @default.
- W4310421176 hasConcept C120665830 @default.
- W4310421176 hasConcept C121332964 @default.
- W4310421176 hasConcept C143715953 @default.
- W4310421176 hasConcept C153385146 @default.
- W4310421176 hasConcept C192562407 @default.
- W4310421176 hasConcept C27289702 @default.
- W4310421176 hasConcept C41008148 @default.
- W4310421176 hasConcept C72591435 @default.
- W4310421176 hasConcept C94915269 @default.
- W4310421176 hasConceptScore W4310421176C110367647 @default.
- W4310421176 hasConceptScore W4310421176C120665830 @default.
- W4310421176 hasConceptScore W4310421176C121332964 @default.
- W4310421176 hasConceptScore W4310421176C143715953 @default.
- W4310421176 hasConceptScore W4310421176C153385146 @default.
- W4310421176 hasConceptScore W4310421176C192562407 @default.
- W4310421176 hasConceptScore W4310421176C27289702 @default.
- W4310421176 hasConceptScore W4310421176C41008148 @default.
- W4310421176 hasConceptScore W4310421176C72591435 @default.
- W4310421176 hasConceptScore W4310421176C94915269 @default.
- W4310421176 hasLocation W43104211761 @default.
- W4310421176 hasOpenAccess W4310421176 @default.
- W4310421176 hasPrimaryLocation W43104211761 @default.
- W4310421176 hasRelatedWork W1991032572 @default.
- W4310421176 hasRelatedWork W2006212390 @default.
- W4310421176 hasRelatedWork W2010489118 @default.
- W4310421176 hasRelatedWork W2042574505 @default.
- W4310421176 hasRelatedWork W2079557901 @default.
- W4310421176 hasRelatedWork W2088148545 @default.
- W4310421176 hasRelatedWork W2129395763 @default.
- W4310421176 hasRelatedWork W2145078790 @default.
- W4310421176 hasRelatedWork W2961129051 @default.
- W4310421176 hasRelatedWork W2985002394 @default.
- W4310421176 isParatext "false" @default.
- W4310421176 isRetracted "false" @default.
- W4310421176 workType "article" @default.