Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310421787> ?p ?o ?g. }
- W4310421787 endingPage "e2244363" @default.
- W4310421787 startingPage "e2244363" @default.
- W4310421787 abstract "Physician burnout is an ongoing epidemic; electronic health record (EHR) use has been associated with burnout, and the burden of EHR inbasket messages has grown in the context of the COVID-19 pandemic. Understanding how EHR inbasket messages are associated with physician burnout may uncover new insights for intervention strategies.To evaluate associations between EHR inbasket message characteristics and physician burnout.Cross-sectional study in a single academic medical center involving physicians from multiple specialties. Data collection took place April to September 2020, and data were analyzed September to December 2020.Physicians responded to a survey including the validated Mini-Z 5-point burnout scale.Physician burnout according to the self-reported burnout scale. A sentiment analysis model was used to calculate sentiment scores for EHR inbasket messages extracted for participating physicians. Multivariable modeling was used to model risk of physician burnout using factors such as message characteristics, physician demographics, and clinical practice characteristics.Of 609 physicians who responded to the survey, 297 (48.8%) were women, 343 (56.3%) were White, 391 (64.2%) practiced in outpatient settings, and 428 (70.28%) had been in medical practice for 15 years or less. Half (307 [50.4%]) reported burnout (score of 3 or higher). A total of 1 453 245 inbasket messages were extracted, of which 630 828 (43.4%) were patient messages. Among negative messages, common words included medical conditions, expletives and/or profanity, and words related to violence. There were no significant associations between message characteristics (including sentiment scores) and burnout. Odds of burnout were significantly higher among Hispanic/Latino physicians (odds ratio [OR], 3.44; 95% CI, 1.18-10.61; P = .03) and women (OR, 1.60; 95% CI, 1.13-2.27; P = .01), and significantly lower among physicians in clinical practice for more than 15 years (OR, 0.46; 95% CI, 0.30-0.68; P < .001).In this cross-sectional study, message characteristics were not associated with physician burnout, but the presence of expletives and violent words represents an opportunity for improving patient engagement, EHR portal design, or filters. Natural language processing represents a novel approach to understanding potential associations between EHR inbasket messages and physician burnout and may also help inform quality improvement initiatives aimed at improving patient experience." @default.
- W4310421787 created "2022-12-10" @default.
- W4310421787 creator A5000938611 @default.
- W4310421787 creator A5005892580 @default.
- W4310421787 creator A5030960632 @default.
- W4310421787 creator A5035432993 @default.
- W4310421787 creator A5052548757 @default.
- W4310421787 creator A5054135799 @default.
- W4310421787 creator A5064835981 @default.
- W4310421787 creator A5069439888 @default.
- W4310421787 date "2022-11-30" @default.
- W4310421787 modified "2023-10-14" @default.
- W4310421787 title "Association of Electronic Health Record Inbasket Message Characteristics With Physician Burnout" @default.
- W4310421787 cites W1571486030 @default.
- W4310421787 cites W2057467297 @default.
- W4310421787 cites W2077123864 @default.
- W4310421787 cites W2099813784 @default.
- W4310421787 cites W2148895878 @default.
- W4310421787 cites W2152304691 @default.
- W4310421787 cites W2181417294 @default.
- W4310421787 cites W2238966896 @default.
- W4310421787 cites W2296048788 @default.
- W4310421787 cites W2426576547 @default.
- W4310421787 cites W2515682654 @default.
- W4310421787 cites W2516435325 @default.
- W4310421787 cites W2559931922 @default.
- W4310421787 cites W2579879063 @default.
- W4310421787 cites W2605217566 @default.
- W4310421787 cites W2624756857 @default.
- W4310421787 cites W2754518417 @default.
- W4310421787 cites W2765488845 @default.
- W4310421787 cites W2774020105 @default.
- W4310421787 cites W2786232884 @default.
- W4310421787 cites W2787392128 @default.
- W4310421787 cites W2789303506 @default.
- W4310421787 cites W2805432200 @default.
- W4310421787 cites W2808129629 @default.
- W4310421787 cites W2857887762 @default.
- W4310421787 cites W2886147870 @default.
- W4310421787 cites W2954484941 @default.
- W4310421787 cites W2982634373 @default.
- W4310421787 cites W3009063690 @default.
- W4310421787 cites W3016802478 @default.
- W4310421787 cites W3019047812 @default.
- W4310421787 cites W3023010146 @default.
- W4310421787 cites W3028484854 @default.
- W4310421787 cites W3031492372 @default.
- W4310421787 cites W3043182004 @default.
- W4310421787 cites W3045642314 @default.
- W4310421787 cites W3047207835 @default.
- W4310421787 cites W3047706673 @default.
- W4310421787 cites W3085623175 @default.
- W4310421787 cites W3093585517 @default.
- W4310421787 cites W3094420632 @default.
- W4310421787 cites W3111044931 @default.
- W4310421787 cites W3112632867 @default.
- W4310421787 cites W3112669073 @default.
- W4310421787 cites W3128447608 @default.
- W4310421787 cites W3128736906 @default.
- W4310421787 cites W3134273711 @default.
- W4310421787 cites W3134966433 @default.
- W4310421787 cites W3143048803 @default.
- W4310421787 cites W3150556347 @default.
- W4310421787 cites W3159335488 @default.
- W4310421787 cites W3163282265 @default.
- W4310421787 cites W3166349455 @default.
- W4310421787 cites W3205513304 @default.
- W4310421787 cites W4200043507 @default.
- W4310421787 cites W4205840856 @default.
- W4310421787 cites W4214528748 @default.
- W4310421787 cites W4230589657 @default.
- W4310421787 cites W4237669925 @default.
- W4310421787 cites W4238630029 @default.
- W4310421787 cites W4242753623 @default.
- W4310421787 cites W4250746569 @default.
- W4310421787 cites W4250895643 @default.
- W4310421787 cites W4280511826 @default.
- W4310421787 cites W4292528167 @default.
- W4310421787 cites W4295776311 @default.
- W4310421787 doi "https://doi.org/10.1001/jamanetworkopen.2022.44363" @default.
- W4310421787 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36449288" @default.
- W4310421787 hasPublicationYear "2022" @default.
- W4310421787 type Work @default.
- W4310421787 citedByCount "3" @default.
- W4310421787 countsByYear W43104217872023 @default.
- W4310421787 crossrefType "journal-article" @default.
- W4310421787 hasAuthorship W4310421787A5000938611 @default.
- W4310421787 hasAuthorship W4310421787A5005892580 @default.
- W4310421787 hasAuthorship W4310421787A5030960632 @default.
- W4310421787 hasAuthorship W4310421787A5035432993 @default.
- W4310421787 hasAuthorship W4310421787A5052548757 @default.
- W4310421787 hasAuthorship W4310421787A5054135799 @default.
- W4310421787 hasAuthorship W4310421787A5064835981 @default.
- W4310421787 hasAuthorship W4310421787A5069439888 @default.
- W4310421787 hasBestOaLocation W43104217871 @default.
- W4310421787 hasConcept C121332964 @default.
- W4310421787 hasConcept C126322002 @default.
- W4310421787 hasConcept C142052008 @default.