Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310422023> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4310422023 endingPage "105697" @default.
- W4310422023 startingPage "105697" @default.
- W4310422023 abstract "Current methodologies to model connectivity in complex networks either rely on network scientists’ intelligence to discover reliable physical rules or use artificial intelligence (AI) that stacks hundreds of inaccurate human-made rules to make a new one that optimally summarizes them together. Here, we provide an accurate and reproducible scientific analysis showing that, contrary to the current belief, stacking more good link prediction rules does not necessarily improve the link prediction performance to nearly optimal as suggested by recent studies. Finally, under the light of our novel results, we discuss the pros and cons of each current state-of-the-art link prediction strategy, concluding that none of the current solutions are what the future might hold for us. Future solutions might require the design and development of next generation “creative” AI that are able to generate and understand complex physical rules for us." @default.
- W4310422023 created "2022-12-10" @default.
- W4310422023 creator A5007730744 @default.
- W4310422023 creator A5091598741 @default.
- W4310422023 date "2023-01-01" @default.
- W4310422023 modified "2023-10-18" @default.
- W4310422023 title "“Stealing fire or stacking knowledge” by machine intelligence to model link prediction in complex networks" @default.
- W4310422023 cites W1761171396 @default.
- W4310422023 cites W1966716734 @default.
- W4310422023 cites W1968861807 @default.
- W4310422023 cites W1970208561 @default.
- W4310422023 cites W1977382765 @default.
- W4310422023 cites W1988301066 @default.
- W4310422023 cites W1997888523 @default.
- W4310422023 cites W2024514015 @default.
- W4310422023 cites W2042110087 @default.
- W4310422023 cites W2066692087 @default.
- W4310422023 cites W2069870183 @default.
- W4310422023 cites W2109553965 @default.
- W4310422023 cites W2119998616 @default.
- W4310422023 cites W2129075135 @default.
- W4310422023 cites W2169148563 @default.
- W4310422023 cites W2563367311 @default.
- W4310422023 cites W2608761935 @default.
- W4310422023 cites W2737664136 @default.
- W4310422023 cites W2771169143 @default.
- W4310422023 cites W2800559265 @default.
- W4310422023 cites W2804521906 @default.
- W4310422023 cites W2811295899 @default.
- W4310422023 cites W2897624302 @default.
- W4310422023 cites W2897946500 @default.
- W4310422023 cites W2950742983 @default.
- W4310422023 cites W2962746482 @default.
- W4310422023 cites W2972205206 @default.
- W4310422023 cites W3083421733 @default.
- W4310422023 cites W3088522034 @default.
- W4310422023 cites W3204140782 @default.
- W4310422023 cites W4247549077 @default.
- W4310422023 doi "https://doi.org/10.1016/j.isci.2022.105697" @default.
- W4310422023 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36570772" @default.
- W4310422023 hasPublicationYear "2023" @default.
- W4310422023 type Work @default.
- W4310422023 citedByCount "2" @default.
- W4310422023 countsByYear W43104220232023 @default.
- W4310422023 crossrefType "journal-article" @default.
- W4310422023 hasAuthorship W4310422023A5007730744 @default.
- W4310422023 hasAuthorship W4310422023A5091598741 @default.
- W4310422023 hasBestOaLocation W43104220231 @default.
- W4310422023 hasConcept C119857082 @default.
- W4310422023 hasConcept C121332964 @default.
- W4310422023 hasConcept C154945302 @default.
- W4310422023 hasConcept C2522767166 @default.
- W4310422023 hasConcept C2778753846 @default.
- W4310422023 hasConcept C31258907 @default.
- W4310422023 hasConcept C33347731 @default.
- W4310422023 hasConcept C41008148 @default.
- W4310422023 hasConcept C46141821 @default.
- W4310422023 hasConceptScore W4310422023C119857082 @default.
- W4310422023 hasConceptScore W4310422023C121332964 @default.
- W4310422023 hasConceptScore W4310422023C154945302 @default.
- W4310422023 hasConceptScore W4310422023C2522767166 @default.
- W4310422023 hasConceptScore W4310422023C2778753846 @default.
- W4310422023 hasConceptScore W4310422023C31258907 @default.
- W4310422023 hasConceptScore W4310422023C33347731 @default.
- W4310422023 hasConceptScore W4310422023C41008148 @default.
- W4310422023 hasConceptScore W4310422023C46141821 @default.
- W4310422023 hasFunder F4320321540 @default.
- W4310422023 hasIssue "1" @default.
- W4310422023 hasLocation W43104220231 @default.
- W4310422023 hasLocation W43104220232 @default.
- W4310422023 hasLocation W43104220233 @default.
- W4310422023 hasOpenAccess W4310422023 @default.
- W4310422023 hasPrimaryLocation W43104220231 @default.
- W4310422023 hasRelatedWork W2329809794 @default.
- W4310422023 hasRelatedWork W2961085424 @default.
- W4310422023 hasRelatedWork W3046775127 @default.
- W4310422023 hasRelatedWork W3170094116 @default.
- W4310422023 hasRelatedWork W4205958290 @default.
- W4310422023 hasRelatedWork W4285260836 @default.
- W4310422023 hasRelatedWork W4286629047 @default.
- W4310422023 hasRelatedWork W4306321456 @default.
- W4310422023 hasRelatedWork W4306674287 @default.
- W4310422023 hasRelatedWork W4224009465 @default.
- W4310422023 hasVolume "26" @default.
- W4310422023 isParatext "false" @default.
- W4310422023 isRetracted "false" @default.
- W4310422023 workType "article" @default.