Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310427510> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4310427510 abstract "According to the Global Electricity Review 2022, worldwide renewable energy generation has increased by 20% primarily due to the installation of large renewable energy power plants. However, monitoring renewable energy assets in these large plants remains challenging due to environmental factors that can result in reduced power generation, malfunctioning, and degradation of asset life. Therefore, the detection of surface defects on renewable energy assets is crucial for maintaining the performance and efficiency of these plants. This paper proposes an innovative detection framework to achieve an economical surface monitoring system for renewable energy assets. High-resolution images of the assets are captured regularly and inspected to identify surface or structural damages on solar panels and wind turbine blades. We use the Vision Transformer (ViT), one of the latest attention-based deep learning (DL) models in computer vision, to classify surface defects. The ViT model outperformed other DL models, including MobileNet, VGG16, Xception, EfficientNetB7, and ResNet50, achieving high accuracy scores above 97% for both wind and solar plant assets. From the results, our proposed model demonstrates its potential for monitoring and detecting damages in renewable energy assets for efficient and reliable operation of renewable power plants." @default.
- W4310427510 created "2022-12-10" @default.
- W4310427510 creator A5000550077 @default.
- W4310427510 creator A5010157411 @default.
- W4310427510 creator A5027807734 @default.
- W4310427510 creator A5030273646 @default.
- W4310427510 creator A5063593309 @default.
- W4310427510 date "2022-11-22" @default.
- W4310427510 modified "2023-09-24" @default.
- W4310427510 title "Identification of Surface Defects on Solar PV Panels and Wind Turbine Blades using Attention based Deep Learning Model" @default.
- W4310427510 doi "https://doi.org/10.48550/arxiv.2211.15374" @default.
- W4310427510 hasPublicationYear "2022" @default.
- W4310427510 type Work @default.
- W4310427510 citedByCount "0" @default.
- W4310427510 crossrefType "posted-content" @default.
- W4310427510 hasAuthorship W4310427510A5000550077 @default.
- W4310427510 hasAuthorship W4310427510A5010157411 @default.
- W4310427510 hasAuthorship W4310427510A5027807734 @default.
- W4310427510 hasAuthorship W4310427510A5030273646 @default.
- W4310427510 hasAuthorship W4310427510A5063593309 @default.
- W4310427510 hasBestOaLocation W43104275101 @default.
- W4310427510 hasConcept C119599485 @default.
- W4310427510 hasConcept C121332964 @default.
- W4310427510 hasConcept C127413603 @default.
- W4310427510 hasConcept C134560507 @default.
- W4310427510 hasConcept C162324750 @default.
- W4310427510 hasConcept C163258240 @default.
- W4310427510 hasConcept C171146098 @default.
- W4310427510 hasConcept C17744445 @default.
- W4310427510 hasConcept C188573790 @default.
- W4310427510 hasConcept C199539241 @default.
- W4310427510 hasConcept C200601418 @default.
- W4310427510 hasConcept C2777381055 @default.
- W4310427510 hasConcept C2778449969 @default.
- W4310427510 hasConcept C39432304 @default.
- W4310427510 hasConcept C41008148 @default.
- W4310427510 hasConcept C423512 @default.
- W4310427510 hasConcept C62520636 @default.
- W4310427510 hasConcept C78519656 @default.
- W4310427510 hasConcept C78600449 @default.
- W4310427510 hasConceptScore W4310427510C119599485 @default.
- W4310427510 hasConceptScore W4310427510C121332964 @default.
- W4310427510 hasConceptScore W4310427510C127413603 @default.
- W4310427510 hasConceptScore W4310427510C134560507 @default.
- W4310427510 hasConceptScore W4310427510C162324750 @default.
- W4310427510 hasConceptScore W4310427510C163258240 @default.
- W4310427510 hasConceptScore W4310427510C171146098 @default.
- W4310427510 hasConceptScore W4310427510C17744445 @default.
- W4310427510 hasConceptScore W4310427510C188573790 @default.
- W4310427510 hasConceptScore W4310427510C199539241 @default.
- W4310427510 hasConceptScore W4310427510C200601418 @default.
- W4310427510 hasConceptScore W4310427510C2777381055 @default.
- W4310427510 hasConceptScore W4310427510C2778449969 @default.
- W4310427510 hasConceptScore W4310427510C39432304 @default.
- W4310427510 hasConceptScore W4310427510C41008148 @default.
- W4310427510 hasConceptScore W4310427510C423512 @default.
- W4310427510 hasConceptScore W4310427510C62520636 @default.
- W4310427510 hasConceptScore W4310427510C78519656 @default.
- W4310427510 hasConceptScore W4310427510C78600449 @default.
- W4310427510 hasLocation W43104275101 @default.
- W4310427510 hasOpenAccess W4310427510 @default.
- W4310427510 hasPrimaryLocation W43104275101 @default.
- W4310427510 hasRelatedWork W2088712732 @default.
- W4310427510 hasRelatedWork W2111287478 @default.
- W4310427510 hasRelatedWork W2124937476 @default.
- W4310427510 hasRelatedWork W2396529191 @default.
- W4310427510 hasRelatedWork W2942314587 @default.
- W4310427510 hasRelatedWork W4205299097 @default.
- W4310427510 hasRelatedWork W4237739704 @default.
- W4310427510 hasRelatedWork W4290997285 @default.
- W4310427510 hasRelatedWork W4292388424 @default.
- W4310427510 hasRelatedWork W960612649 @default.
- W4310427510 isParatext "false" @default.
- W4310427510 isRetracted "false" @default.
- W4310427510 workType "article" @default.